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Our approach to geometry with young children begins with students’ in-
formal knowledge about situations, followed by progressive mathemati-
cal reinterpretation of these experiences, an approach consistent with the
Dutch approach to “realistic mathematics education” (see Gravemeijer,
chap. 2, this volume). Young children’s everyday activities—looking,
walking, drawing, building, and manipulating objects—are a rich source
of intuitions about spatial structure (Freudenthal, 1983; Piaget & Inhelder,
1948/1956; Streefland, 1991; van Hiele, 1986). By looking at pattern and
form in the world, children develop informal knowledge about geometric
constructs like perspective, symmetry, and similarity. For example,
preschoolers pretend that miniatures are small-scale versions of familiar
things, and even infants distinguish contour and symmetry (Fantz, 1958;
Gravemeijer, chap. 2, this volume; Haith, 1980). By walking in their neigh-
borhoods, children learn to reason about landmarks, routes, and other el-
ements of large-scale space (Piaget, Inhelder, & Szeminska, 1960; Siegel &
White, 1975). By drawing what they see, children represent form (Good-
now, 1977). By building structures with blocks, toothpicks, or Tinkertoys,
children experience first-hand how shape and form play roles in function
(e.g., objects that roll vs. those that do not) and structure (e.g., sturdiness;
see Middleton & Corbett, chap. 10, this volume).

Everyday experiences like these, and the informal knowledge chil-
dren develop over time by participating in them, constitute a springboard
into geometry. For example, the ideas that children develop about position
and direction while walking in their neighborhood can be elaborated
mathematically in a variety of ways—as coordinate systems, as compass
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directions, as maps, and as dynamic Logo models. Each of these mathe-
matical forms of thought has antecedents in children’s experiences (e.g.,
maps in children’s drawings, coordinate systems in city blocks), and col-
Jectively these experiences constitute a good grounding for making math-
ematical sense of the spatial world.

Although rooting mathematics in children’s experiences is consis-
tent with theories of learning that emphasize the importance of situation
(Lave & Wenger, 1991), it is essential that teachers also establish a class-
room culture that grounds student activity in mathematical reflection and
generalization (Cobb, Yackel, & Wood, 1995; Vygotsky, 1978; Watt, chap.
17, this volume; Wertsch, 1991). Consequently, developing student under-
standing of geometry relies on classoom culture as much as it does on
mathematically fruitful situations. Skilled teachers develop models of stu-
dent cognition and its typical trajectories of change {Clark & Peterson,
1986; Fennema & Franke, 1992; Schifter & Fosnot, 1993). Such models help
teachers recognize “teachable moments” and other worthy landmarks in
the ebb and flow of classroom activity.

Teaching and learning, then, are best viewed in tandem. It is impor-
tant to identify mathematically important ideas and to build on children’s
experiences in ways that help children see mathematics as a way of mak-
ing (more) sense of their experiences. Yet it is equally important that teach-
ers understand landmarks in the progression of children’s learning be-
cause, without a model of student learning, teachers must rely exclusively
on curriculum and its associated scripts. Curriculum, however, cannot be
designed to meet the manifold of possibilities inherent in a classroom.
Hence, no matter how soundly designed, and no matter how sensitive to
children’s informal knowledge, curriculum alone cannot result in signifi-
cant conceptual change.

Because many of the developmental trajectories we observed in the
longitudinal investigation described in the previous chapter were com-
paratively “flat” or incremental, we decided to design classroom environ-
ments that would promote development of student reasoning about space
and geometry. To establish a robust coordination between teaching and
Jearning about space for young children, we collaborated with a small
group of primary-grade teachers to develop a primary-grade geometry
based on children’s everyday activity related to (a) perception and use of
form (e.g., noticing patterns or building with blocks), leading to the math-
ematics of dimension, classification, transformation; (b) wayfinding (e.g.,
navigating in the neighborhood), leading to the mathematics of position
and direction; (c) drawing (e.g., representing aspects of the world), lead-
ing to the mathematics of maps and other systems for visualizing space;
and (d) measure {e.g., questions concerning how far? how big?), leading
to the mathematics of length, area, and volume measure. Our selection of
these strands of experience was guided partly by the developmental
trends in children’s reasoning evident in the results of the longitudinal in-
vestigation described in Lehrer, Jenkins, and Osana (chapter 6, this vol-
ume) and partly by our intuitions about fruitful continuities between chil-
dren’s experiences and early geometry. The longitudinal investigation
provided starting points for development and some potential signposts of
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progress, but for the most part we designed instructional environments
incrementally, conjecturing about appropriate instructional activities and
then testing them in the crucible of the classroom. Collectively, teachers
and researchers conducted “design experiments” (Brown, 1992) that re-
vealed typical patterns and progressions of student thinking when stu-
dents were immersed for prolonged periods of time in classroom activity
that supported the development of spatial reasoning. Each year, we re-
vised our instructional design by updating our selection of curriculum
tasks and tools, our models of student thinking, and our assessment prac-
tices in light of what we learned. In this chapter, we summarize some of
the design principles and outcomes of a 3-year study of teaching and
learning geometry in several second-grade classrooms.

INSTRUCTIONAL DESIGN

Our instructional design was multicomponential. The key constituents of
the design (see Fig. 7.1) included (a) researcher descriptions of student
thinking derived from the longitudinal study of development (Lehrer, Jenk-
ins, &'Osa.na, chapter 6, this volume), (b) teacher-researcher collaborative
investigation of student thinking in the context of classroom instruction
(c) professional development workshops, and (d) a parent program that en-
larged the learning community beyond the walls of the classroom. We
briefly describe the first three components; a fuller description of the parent
component is available in Lehrer and Shumow (in press).

Portraits of Student Thinking

We developed text and video descriptions of the i
pec growth and change in

student thinking that we had observed during the longitudinal studyg and

supplemented these descriptions with other research findings, as needed

RESEARCH MODELS OF
STUDENT THINKING

i INSTRUCTIONAL DEVELOPMENT
RESEARCH DESIGN WORKSHOPS & TEACHER
j e AUTHORING

PARENTS AS PARTNERS

FIG. 7.1. Instructional design for the teaching and learning of geometry.
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(see Clements & Battista, 1992, for a summary of related research). The re-
sulting portraits of student thinking traced landmarks in reasoning about
(a) structure and form, (b) large-scale space (wayfinding), (c) representa-
tions of space including drawings and maps, and (d) measure of length
and area (Lehrer, Fennema, Carpenter, & Ansell, 199_2): We also col'lz}bo-
rated with a small group of teachers to develop descriptions of transitions
in student thinking observed in their classrooms. This collaboration re-
sulted in substantial modification and revision of the documents devel-
oped by reseachers. What started as a resgarcher-centered_ effort was
transformed during the course of the 3 years into a collaborative research
effort in which teachers and researchers jointly developed portraits of stu-

dent thinking.

Professional Development

A major portion of the instructional design was devoted to professional
development, including in-service workshops, teacher design of curricu-
Jum tasks, and teacher-authored descriptions of student thinking related

to those tasks.

In-Service Workshops. During the first year, in-service workshops
were anchored in Cognitively Guided Instruction (CGI; Carpenter &
Fennema, 1992). The CGI program provides teachers with examples of
developmental benchmarks in children’s acquisition of knowledge
about number, especially about situations involving addition and sub-
traction or multiplication and division. CGI focuses .exphc1tly on the in-
teractive roles of problem structure (e.g., the semantics of types of arith-
metic word problems) and solution strategies (e.g., how children solve
different types of problems) and, more tacitly, on the role of the teacher as
a facilitator of student discourse about mathematical problem solving. In
CGI classrooms, teachers commonly base instructional decisions on
knowledge of student thinking (Fennema, Franke, Carpenter, & Carey,
1993). Part of the teacher’s knowledge is knowledge of the individual
child—his or her learning history—and part is knowledge of typical de-
velopmental trajectories. Based on developmental be.ncbmarks, teachers
decide what is potentially fruitful for “rousing to life” (Tharp & Gal-
limore, 1988) and what is likely to be pointless and even f'rustra'tmg toa
student. We redesigned CGI to include descriptions of children’s spatial
reasoning and geometric thinking (Lehrer & Jacobson, 1994).

Ten primary grade teachers participated in approxunately 60 hours
of in-service workshops devoted to developing their knowledge about
key transitions in children’s reasoning about space and number. The
workshops were led by a CGI mentor teacher, Annie Keith, and a CGI pro-
ject researcher, Ellen Ansell. Workshop participants read text about the de-
velopment of children’s understanding, saw videos of children solving
problems in clinical interview settings, attempted to track the develop-
ment of thinking in three “target” children in their classrooms,l solved
problems from the perspective of their children through role playing and
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related techniques, and discussed issues related to classroom implemen-
tation. Because teachers taught in different buildings, an electronic net-
work facilitated communication among teachers, workshop providers,
and researchers.

Tracking the development of selected children during the course of
the year proved especially powerful, perhaps because teachers had the
opportunity to reason about specific cases rather than reasoning about
more general, and perhaps more ambiguous, groups like “children” or
“the classroom.” Case-based reasoning (Williams, 1992) helped teachers
see the relationship between instances of thinking embedded in clinical
interviews and children’s ongoing thinking in their classrooms. Class-
room cases helped teachers instantiate the more general benchmarks
about children’s thinking presented and discussed during the workshops.

The geometry workshops acquainted teachers with new elements of
curriculum (e.g., wayfinding and three-dimensional form), new tools(e.g.,
magnetic compasses, Polydrons, and Logo), new forms of mathematical
notation (e.g., two-dimensional “nets” to represent three-dimensional
structures), and what research suggested about developmental bench-
marks of student reasoning. Problems that teachers solved were designed
to illustrate the potential interplay among instructional tasks, tools, and
the notations that we anticipated that students might invent or appropri-
ate. For example, to help teachers recast their understanding of spatial
pattern (conceived by most teachers as the result of arranging wooden
“pattern blocks” representing familiar forms like squares and trapezoids
to form sequences like square, triangle, square, triangle, etc.), during one
teacher workshop we presented a task that included the creation of a pat-
tern as a repetition of identical elements (Senechal, 1990):

Write directions to tell someone how to draw one of the shapes from
the pattern-block bucket. What pattern do you notice about the shape,
and how is the pattern represented in your description of the draw-
ing? Now write a procedure in Logo to draw the shape. How does the
change in representation from paper-and-pencil to Logo change the di-
rections? What stays the same?

While solving this problem, teachers explored simple shapes as a
repetition of identical elements and considered the roles that different
forms of representation (i.e., drawings, directions, Logo procedures)
might play in children’s thinking about form and pattern. Logo proce-
dures, for instance, make repetition of identical elements explicit (Lehrer,
Randle, & Sancilio, 1989). For example, a square in Logo is the fourfold
repetition of a movement of the turtle forward or backward followed by a
90° turn by the turtle. During another workshop, teachers created a map
of the school library, a model of a large-scale space. While constructing the
map of the library, teachers considered the interplay among spatial con-
figuration, scale, and measurement. Teacher discussion connected this ex-
perience to related ideas, such as perspective for depicting objects in the
map (bird’s-eye view vs. object view) and the utility of symbols for maps
(e.g., icons, photos, pictures). Teachers also talked about standard units of
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measure, what they might be “good for,” and what ideas children might
have about standard measure.

The in-service workshops helped teachers develop greater under-
standing of student thinking about number and space, and they intro-
duced teachers to pedagogical issues, especially the importance of multi-
ple forms of representation and the need to help children develop a
language about space. The workshops were forums for constructing
knowledge, for enlisting the support of peers and of researchers, and for
developing a community for the reform of mathematics education in the
participating schools. In subsequent years, teachers organized their own
forums for professional development, where they gathered to share ideas,
reflect on their experiences, and initiate others in their practices. During
the third year, this resulted in a teacher-led series of afternoon and week-
end workshops for colleagues, with researchers in an advisory role.

Teacher Authoring. ~ After the first year of workshops, five teachers elected
to participate in a week-long summer institute, during which they designed
tasks to help students develop understanding of the mathematics of space.
For each task they designed, teachers conjectured about conceptual land-
marks or “ways of thinking” that students would encounter as they worked
with the task. Ideally, tasks allowed multiple points of entry for different
forms of background knowledge and skills. Tasks also included appropria-
tion of curriculum units developed elsewhere, with revisions guided by the
goal of making student thinking more visible. Besides helping teachers
track student understanding, making student thinking visible is a necessary
first step in creating shared reference for classroom discussions.

Tasks were refined during group conversation. For example, one
teacher, Jennie, proposed incorporating length measure into a thematic
unit on “How big am I?” The teacher’s original idea was to use a story,
“How big is a foot?” to illustrate how using a different unit of measure
can change the measured length of an object. She proposed that students
use their own feet to measure the length and width of their classroom
and then talk about why their measured lengths were different. During
the group discussion, several colleagues noted that the task as designed
might, in accord with the research portraits of student thinking, raise
other issues in measure theory, such as the need for identical units, iter-
ation of units (some teachers thought that students might leave spaces
between footprints), and the relationship between the object being mea-
sured and the unit of measure. This discussion resulted in redesign of
the task to include other personal units of measure and more opportuni-
ties for developing the need for standard units (to reconcile different but
valid measures obtained with personal units). Jennie then used the task
during the course of instruction the following year, documenting bench-
marks in student reasoning. The same teachers also participated in a
second summer institute the following year, editing and revising their
work in light of student performance during the course of the second
year. During this second year, teachers’ descriptions of student “ways of
thinking” became richer and more complete, resulting in more articu-
lated portraits of student thinking.
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RESEARCH DESIGN

Our research design reflected the complexity of the instructional design.
Accordingly, we developed multiple sources of data about student learn-
ing, teacher beliefs and teacher practices. We focused on three Grade 2
classrooms. At the beginning of the study, one teacher had taught for
3 years, another for 7, and the third for 5 years. We tracked change for
3 years in two of the classrooms, and for 2 years in the other classroom
(the teacher moved at the beginning of the third year). Two of the class-
rooms were in the same elementary school; the third was in an elementary
school located nearby. The students came from a mixture of middle- and
working-class families.

Teacher Practices

We observed each teacher’s classroom practices three times each week
during the course of each school year. Each observation lasted approxi-
mately 2 hours and included audiotape and/or videotape of classroom
activity, interviews with individuals or groups of children, (often) inter-
views with teachers about their goals and their views about each lesson,
and artifacts of classroom work. Consequently, we were able to amply
document teacher practices and transition during the 3-year span. The
classroom observations also provided a window to student understand-
ing and to conceptual change.

Student Learning

Egch year, we assessed student learning about (a) two- and three-
dimensional shapes, including transformations of the plane; (b) position,
direction, and perspective; (c) notations and representations of space, in-
cluding drawings, plan views, maps, and nets; and (d) measure of length,
area, and volume. We also assessed student learning about number, espe-
cially student ability to solve a variety of word problems. We employed
two forms of individual assessment, administered at the beginning and
end of each school year. The first consisted of paper-and-pencil measures
of problem solving. The second consisted of clinical interviews that al-
lowed us to examine children’s reasoning and strategies in greater depth.
Sample items and interview questions are displayed in the Appendix. In
addition to this individual level of analysis, classroom observations pro-
vided a window to collective student learning as revealed by children’s
whole-group conversations and by ongoing researcher-student inter-
views of selected children in each class.

CLASSROOM IMPLEMENTATION

Although the three teachers we observed all participated in the same se-
ries of workshops and engaged in the summer institutes devoted to cur-
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riculum design, each developed a unique stance in relation to teaching
children about space, so that the view from each classroom was character-
ized more by variation than commonality in activity. For one teacher,
Ms. C., the predominant theme for coming to know about space was to
measure it, so in her classroom, many of the tasks posed to students in-
volved measurement. For example, students designed their own tape
measures for length, investigated and invented units for area, and, given
a single sheet of 8.5 X 11 in. paper, designed popcorn containers that
would hold the most and the least popcorn. In contrast, for Ms. S., the
predominant theme for coming to know about space was to experiment
with form, and many of the tasks she posed to students involved con-
trasting and comparing different two- and three-dimensional forms, find-
ing and constructing the Platonic solids, and designing quilts and other
patterns. For Ms. J., children’s learning about space was anchored in
wayfinding and representation. Accordingly, she most often posed tasks
to children that involved wayfinding, mapping, and graphing.

Transitions in Task Structure

Despite the difference in the strand of spatial mathematics that teachers
chose as their “leading edge” or emphasis, all teachers shared some core
practices. Over time, all three teachers went from posing tasks in isolation

‘to developing sequences of tasks that provided children with opportuni-
ties for progressive elaboration of core concepts. For example, in Ms. J.'s
first year, children wrote directions to find a spot marked “x” in their
classroom, with revisions emerging as children negotiated the measuring
of length and turns in their directions. By the third year, writing directions
was merely the starting point for a series of tasks involving wayfinding,
mapmaking, and Logo. Consequently, children in her class were afforded
progressive opportunity to reconstitute their initial understanding of po-
sition and direction from intrinsic notions of position and direction, to un-
derstandings that encompassed perspective, scale, and extrinsic frames of
reference.

Transitions in Representational Fluency

During the course of the study, teachers also increasingly emphasized rep-
resentational fluency; children invented or appropriated multiple forms
of representation. For example, in Ms. S.s classroom, students re-
constituted their natural language for two- and three-dimensional forms
as properties; they transformed their understanding of form to include
(consensually agreed on) lists of these properties, and amplified their
knowledge of form through drawings (e.g., top, front, and side views ‘of
solids), Polydron constructions (e.g., trying to find “perfect” [Platonic]
solids), and Logo procedures. A related development was a proliferation
of tools (and associated practices), which children used to sustain investi-
gation of space (ranging from magnetic compasses and Polydrons to stu-
dent-invented means for measuring length, area, and volume).
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Transitions in Classroom Discourse

A noticeable shift in conversational patterns emerged during the 3 years
of the study. Initially, teachers were more likely to encourage classroom
talk when it concerned numeric solution strategies: They asked children
to compare and contrast the solution strategies of their peers and empha-
sized that a number of different strategies could be used to find an answer.
In contrast, their initial scaffolding of conversations about space generally
consisted of simple elicitation of multiple ideas from children, a “stirring”
of the pot of ideas,with little attempt to compare and contrast ideas or to
guide children toward selecting some of their ideas for further explo-
ration.

During the course of the study, the nature of classroom conversa-
tions about space changed dramatically. First, there were many more of
them as the proportion of time children spent exploring the mathematics
of space increased, especially during the second year of the study. Second,
teachers became increasingly adept at discerning patterns in children’s
thinking about space, so that they often helped children talk about simi-
larities and differences among their ideas, in contrast to their previous
pattern of simple elicitation without comparison. Third, teachers became
much more adept at helping children develop a coherent language about
space to supplement their initial, near-exclusive reliance on gesture and
shared visual regard to communicate about space. Children’s talk about
figures came to include descriptions of properties and ways to generate
instances, in contrast to their earlier reliance on single-word descriptions
(e.g., “skinny”) and gesture. Fourth, talk became intimately connected
to justification and argument. Classroom conversations often revolved
around the need of students to convince others of the validity of their own
viewpoints.

In summary, during the years of the study, teachers either designed
or appropriated a number of different tasks as initiators of student learn-
ing. Tasks became progressively more interconnected, and teachers used
them to revisit or “spiral” important ideas. Representational fluency was
increasingly emphasized, so that students rarely ever talked without
drawing or building, or measured without designing a tool. Perhaps the
most noticeable change was in the nature of classroom talk about space.
Children’s initial talk about space was nearly always gestural and rarely
intersubjective; in later conversations, gesture supplemented linguistic
description, and language was often taken as shared.

STUDENT LEARNING

Each year of the study, we measured students’ problem solving in both
space and number, and we noted significant transitions in student think-
ing each year in all classrooms. We found significant growth in children’s-
number sense and in children’s spatial sense, as indicated by the number
of problems correctly answered at the beginning and end of each year.
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For number sense, individual interviews suggested that this change in
performance could be attributed to two main factors. First, children_devel—
oped more sophisticated strategies for solving number problems during the
year. To measure this increase in sophistication, strategies were assigned lev-
ols: 0 for No Solution, 1 for Direct Modeling (e.g., children uses counters to
represent quantities following the action sequence in the word _problem), 2
for Counting (e.g., children solve an addition problem by counting on from
the larger addend), 3 for Recalled Fact, Derived Fact, and Algorithm (e.g.,
children invent or use algorithms, like 27 + 27 —20 + 20 = 40and7 +7 = 14
5 40 + 14 = 54; see Fennema et al., 1996). The growth in the highest level
strategy available to children at the beginning and end of each year is dis-
played in Fig. 7.2a. Second, over time, children were able to apply a wider
range of strategies to problems. To track progress in the range of strategies
available to children, strategies were assigned to one of four classes: Direct
Modeling, Counting, Recalled and Derived Facts, and Algorithms. The sig-
nificant increase in number of classes of strategies that children demon-
strated to solve arithmetic word problems is illustrated in Fig, 7.2b.

We also noted significant pre-post conceptual change in each of the
four strands of spatial sense, as indicated by student scores on problems

M pretest
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w
R |

(Maximumof 3)

Average Highest Strategy Level

Average Nurnber of Strategy
Classes Used (Maxinwum of 4)

Year 2 Year 3

p<.001 p<.001

b

FIG. 7.2. Change in students’ use of arithmetic problem-solving strategies over the 3-year
study, by year.
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administered at the beginning and end of each school year. For example,
Fig. 7.3 shows the improvement in students’ performance on problem-
solving assessments during the third year of the study. The proportion
correct was calculated for each of the four strands, and these four pro-
portions were then combined with equal weight to arrive at a total score.
Individual interviews suggested major transformations in how children
thought about the structure of two- and three-dimensional space, mea-
surement, representations of space, and position and direction in a large-
scale space. For example, children’s initial conceptions of shape and form
were dominated by resemblance to familiar objects and other aspects of
appearance (see Lehrer et al., chap. 6, and Pegg & Davey, chap. 5, this vol-
ume), but they changed during the course of the year to include reasoning
about properties across a variety of contexts. Similarly, children’s initial
ideas about length or area measure often confused the two, but every year,
their understanding of key ideas in length and area measurement, such as
the need for identical units of measure, far exceeded that of fifth-grade
children in their school. Although these transitions were expected, they
were unusual considering the relatively static patterns of growth and de-
velopment that we observed in the longitudinal study (Lehrer et al., chap.
6, this volume).

TEACHING AND LEARNING IN THE CLASSROOM

To illustrate the interactions between teaching and learning in these class-
rooms that could account for the striking pattern of conceptual change
noted previously, we focus on two strands of learning in Ms. C.’s class-
room. In the first, children learned about transformational geometry and
symmetry as they designed a quilt. Not all of children’s learning was do-
main specific; children also explored issues in epistemology, especially the
the limits of case-based induction. In the second, children learned about
area and its measure. The lessons on area illustrate how teachers wove

Bpretest
O posttest

Proportion of Geometry
Items Correctly Soived

Pattern Measure  Depiction Navigation Totat

FIG.7.3. Improvement in students’ performance on problem-solving assessments during the
3-year study, by strand of geometric reasoning.
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tasks, notations, and conversations to guide children’s exploration of the
foundations of measure theory.

Designing Quilts’

Quilts and quilting were part of the cultural heritage of most of the chil-
dren in this classroom; children were interested in the quilt designs they
saw in books, video, still photos, and pieces brought to the classroom by
quilters in the community. Quilt design provided children the opportu-
nity to explore important mathematical ideas like symmetry and transfor-
mation, and to develop conjectures about how these mathematical ideas
might contribute to their aesthetic experiences of the artistry of quilt de-
signs. Here we trace the progression of student thinking in Ms. C.'s class
over a 5-week period during the third year of the study, by focusing on
“snapshots” of classroom activity and conversation. More extensive dis-
cussion of connections between children'’s thinking about quilt design and
algebraic concepts are discussed in Strom and Lehrer (in preparation).

Partitioning Space.  Students first designed a paper-and-crayon (replaced
later by paper cutouts and then computer-screen objects) “core square,”
the basic object subjected to geometric transformations to produce a quilt
(see Fig. 7.4). A core square was composed of an array of squares, each
partitioned into two right isosceles triangles. For some students, the ap-
parently transparent idea of partitioning the square into triangles was
somewhat problematic, partly because the task presupposes acquisition of
diagonality (Olson, 1970).

After creating the core square, children used isometries of the plane
(flips, turns, and slides) to arrange four identical copies of their core
square into 2 X 2 designs. These designs were then composed to create the
final pattern for the quilt. Other quilts were designed by transforming
“strips” of core squares: A strip was a row of core squares arranged by ap-
plication of the three transformations.

The complexity of the core square could be varied by using a mosaic
of different forms (e.g., smaller triangles that tiled the region) and colors.
Efforts to redesign quilts by changing the core square led children to con-
sider a variety of ways of partitioning the same region of space. Moreover,
these design efforts helped children explore the consequences of different
transformations and combinations of transformations for properties of
form like color adjacency and symmetry. In the sections that follow, we
describe these and related forms of thinking about the plane.

Distinguishing Physical from Mathematical Motion. Because children
constructed two-sided paper core squares or core squares composed of
Polydrons, they could physically enact flips, slides, and turns. The cur-
riculum confined these initial experiences to translation, vertical and hor-

1 The quilt design curriculum was developed by Education Development Center. The
classroom teacher described here also contributed to the design of the curriculum during
field testing.
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“side flip"”
refiection across
a vertical line

g

Core square “right turn 90"
90 degree right
rotation

“slide, copy core”
translation

FIG. 7.4 Sample core square and three possible transformations. (a) Core square. (b} “Side
flip”: reflection across a vertical line. (c) “Right turn 90”: 90° right rotation.
(d) “Slide, copy core”: translation.

izontal reflection (flips), and rotation in increments of 90°. To help children
mathematize these physical motions, children developed a notation to de-
scribe each motion so that they could easily write directions for other chil-
dren to follow when replicating a particular quilt design. Through discus-
sion and consensus building, children developed the following notations
for flips: UF for up-flip (reflecting about the horizontal axis by grabbing the
bottom edge and flipping the square over), DF down-flip (reflecting about
the horizontal axis by grabbing the top edge and flipping the square over),
LF left-flip (reflecting about the vertical axis by grabbing the right edge and
flipping the square over), and RF right-flip (reflecting about the vertical
axis by grabbing the left edge and flipping the square over). Note that chil-
dren’s notations for reflections included some that could be distinguished
in physical motion but that had no mathematical counterparts.

When conjecturing about what steps a fellow student might have
taken to create her 2 X 2 design from the original core square, some stu-
dents thought that one of the actions taken was an up-flip, and other stu-
dents thought that the same action was a down-flip. Upon testing these
conjectures, the class discovered that both flips produced the same re-
sult—it was impossible to distinguish one from the other.

Because no consensus was reached after the first example, Ms. C.
went on to test other examples, using Polydron models of children’s core
squares: :
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Maybe that was just their core square. Maybe they just had a weird
core square. Let’s try it with this core square. OK, do they look the
same, the way | have them now?

Note that Ms. C.’s comment about “maybe that was just their core
square” invited children to consider multiple cases, and, by implication, a
search for a negative case, not just single confirming instances in their jus-
tification. At this point, Ms. C. had established a routine for testing the
conjecture on a given core square. She placed two copies of the same core
square side by side, then flipped one up and the other down. When she
finished these flips, the core squares were no longer side by side; the one
that was flipped up was above the original position; the one that was
flipped down, below the original position. It was visually apparent that
the actions performed on the two squares were physically different; it was
also obvious that both actions resulted in exactly the same pattern on both
squares. After several more examples, children became convinced that
they needed to change their notation to UDF for up-down flip and SF for a
sideways flip because different physical actions (up or down, right or left)
led to identical results. This process helped children distinguish the plane
of action from the plane of mathematics.

Viewing the World Through Notation. The use of notation for communi-
cating design also helped children reexamine physical motion from a
mathematical point of view. When children wrote directions for 2 X 2 de-
signs that involved compositions of transformations (successive transfor-
mations, like a turn followed by a flip), they often only represented one of
the motions in notation. For instance, a child wrote SF for a composed mo-
tion, like SF TR 1/4. After prolonged discussion and extended exploration,
some members of the class proposed that the source of the difficulty was
that their wrists could “flip and turn” at the same time—the differentiation
implicit in the mathematical notation was not well differentiated in the mo-
tion of the wrist. Children used the notation to recast continuous physical
motion as discrete steps. More generally, this discovery is a microcosm of
the relationship between a model (here, the motions on the plane) and the
world (here, the physical movements of hands): Models fit (to a degree) the
world, but the world also changes as students view it through the model.
Hence, model-fitting is a dual relation.

Generalization. Ms. C. often invited students to make conjectures about
transformations by considering the generality of a case generated by one or
more students. The signature phrase “Do you think this is true all the time?”
was usually followed by a search for other confirming cases and for coun-
terexamples. The grounds of evidence usually consisted of a larger number
of cases that clearly fit what the class called a “rule” (a generalization), ac-
companied by lack of (a failure to find) counterexamples. This type of con-
jecture—evidence cycle can be illustrated by a conjecture about the number
of flips of a core square that would return it to its original position (the or-
der of the up-down flip). The original position was distinguished by a small
“x” in the upper left corner, a convention introduced by the teacher to facil-
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itate discussion. When one child suggested that it would take two up-down
flips, Ms. C. replied, “Two? Let’s try it. Watch. Memorize Katie’s core
square. This is what it looks like. One [flipping the core square]. Two [flip-
ping it again].”

At this point, children established that the order of the up—down flip
was two. Students suggested that 0 and 4 flips would also work, and they
tested this conjecture with the core square. Br then suggested that any even
number would have the same result. Children went on to explore this con-
jecture, testing a number of cases before one student, Ke, suggested that
counting by 2s “as high as you wanted” would have the same result.

The Limits of Case-Based Generalization. Although the class norm for
evidence about a conjecture consisted primarily of inductive generaliza-
tion from positive and negative cases, the limitations of cases were dis-
covered by this class. Ms. C. noted that all children had designed at least
one asymmetric core square, and all of these asymmetric core squares
were used to create at least one symmetric 2 X 2 design. Despite Ms. C.’s
appeal to students’ experiences and their positive cases, some students in
the class remained unconvinced about the generality of the conjecture.
Ms. C. decided to probe children’s thinking about the number of cases that
might serve:

Ms.C.: So if we shared 20 or more ways together today that you could
start with an asymmetrical core square, and still every time make
a symmetrical 2 X 2 design, how many more do you think we'd
_ have to test before we could say you could always do it?
* Nit  Hundreds of hundreds of thousands.
Na:  We would have to test all the core squares in the world.
Ms. C.: Could we do that?
Class:  No, no.

Na:  We'd have to test all the core squares in the world that are asym-
metric.

Children decided that they would have to test every case (an ex-
haustive procedure), and ultimately decided that this would be neither
practically feasible nor even, in principle, possible because, as one child
noted, “People are probably making some right now.” We believe that rea-
soning about the limits of induction, a theme that resurfaced later in this
classroom, sets the stage for (informal) proof as a form of argument. We
are currently working with teachers on forms of instruction that build on
this foundation.

Art and Geometry. During the course of 5 weeks, children’s appreciation
of the aesthetics of quilt design changed markedly. One measure of this
transformation was their talk about what they found interesting when
they saw a video accompanying the unit, which displayed a variety of
quilt designs. Initially, children’s talk about design was weighted heavily
toward “cool” colors. Over time, their comments began to shift, so that by
the end of the unit their talk about “cool” quilts included consideration of
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ed by lines of symmetry, complexity of form (e.g., number of
;)};tri(t)il(e)f\f i)af};he cgre square)),,and trgz\sformations that produced dl.ffere'nt
types of color adjacency. Students also began to notice the constraints 11n—
herent in certain design considerations. On.e child (Da-nny), for exam;zl e,
cautioned a peer about the constraints cgzrtam symmetrical core squgrfe e-
signs put on the variation of 2 X 2 designs that can be constructed from

them:

Don’t make one color diamond in the middle and all the corners one
other color because no matter if you flip it or do anything th.h it
[meaning transformations to the core square to make the 2 X 2 c.iemgn]
it won’t work [to produce multiple 2 X 2 designs]... because it is sym-

metrical all the way.

i i i ’ inciple. Note that
Fig. 7.5 displays one instance of Danny, 5 generalﬂprmmp
any trar%sformation will produce, in Danny’s words, “the only 2 X 2 you

can make” from the core.

Summary

i ign was a fertile ground for developing and exploring a mathe-
gggz:lersngdel of the planeg Informal knowledge of drawing and aesthet;-
ics served as a springboard to mathematical notation and argument,
which were mutually constituted in the ongoing activity of the Cllasgr‘oom.
Children’s explorations of transformations and symmetry resulte lr;hre-
organization of their informal knowledge of aesthetics and design, thus

FIG.7.5. An example of constraint caused by symmetrical design of core square (Dann}l s
general principle). Note that no transformation in design occurs no matter which

way the core square is “flipped.”
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completing a feedback loop in which the mathematization of informal
knowledge was incorporated into the body of that knowledge. In the next
section, we describe a similar process of progressive mathematization of
everyday experience: how children’s informal knowledge of appearance
and the amount of space covered by a shape was successively trans-
formed into the mathematics of measure.

DEVELOPING AN UNDERSTANDING OF AREA MEASURE

Ms. C. designed a spiral of tasks, all related to thematic units, to help chil-
dren develop their ideas about area and its measure. The design of each
task was guided by her knowledge of how children think about principles
of area measure like space-filling, additivity of areas, and identity of units
(Lehrer et al., chap. 6, this volume). The progression of tasks illustrates
how teachers used their knowledge of children’s thinking as a guide for
designing and adapting instruction. Children’s responses to each task in-
dicate again the interactive roles of tasks, notations, and classroom con-
versation.

Three Rectangles

Ms. C. first asked children to judge which of three “quilt pieces” (rectan-
gular strips of construction paper tacked on the blackboard) “covers the
most space.” The dimensions of each quilt piece were unknown to chil-
dren, but the pieces were designed to correspond to different arrangements
of the core squares of the quilting unit (1 X 12, 2 X 6, and 4 X 3 core
squares, respectively). The core squares were not demarked in any way.
She labeled each quilt with a letter—A, B, and C (see Fig. 7.6).

The design of the task reflected Ms. C.’s understanding of student
thinking. She wanted children to construct a unit of area measure by
building on their informal knowledge of cutting and rearranging pieces
(see Lehrer et al., chap. 6, this volume). She chose these shapes expecting
that the conflict between perception (the rectangles appear to cover differ-
ent amounts of space) and conception would lead to eventual construc-
tion of a unit of measure:

Once they make predictions [about which covers the most space], I
expect they might say, “Well, I think Shape C covers more space.”
“No, no, no, it's A—Look how long it is.” But when I ask them, “How
can we find out?,” what are they going to say? Will they suggest cov-
ering it? Will they suggest measuring around the outside? Will they
suggest folding it in half? [And I will tell them,] “You are looking at
these three shapes. You have different ideas about which might cover
more space, but how are you going to prove to someone what you
think might be true?” By the'end of the lesson, some of them will say,
“Well, it looks like it takes up more space, but really you could just
push that space around and make it fit.”
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FIG. 7.6. Constructing units of area measure: “Which quilt piece covers the most space?”

Additive Congruence. Most students began by claiming thaf, sha”pe Bor
shape C would cover the most space because they were “fatter” or “looked
bigger.” However, some of the students in the class dlsag'r,eed and thought
that perhaps shapes B and C were really the same size. Mi's work is shown
in Fig. 7. 7. She decided to fold Bin half because she saw that if she folded
it in half and rotated it, it would cover exactly half of C. Sl}e also noted that
if half-B was flipped horizontally, it would cover C. Mi’s knowledge of
transformations facilitated this exploration. Children went on to explore
other partitions of B and C that could lead to this result.

Constructing Units of Measure.  Eventually satisfied that B and C did in-
deed cover the same amount of space, the class turned its attention to A.

~

B,

B,

FIG. 7.7. Mi’s solution: folding B to measure C.
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Mic claimed, “You make C into A,” and proceeded to demonstrate by
folding C into four equal parts, each the width of A (see Fig. 7.8a). He
placed this “strip” at the top edge of A and used his finger to demark the
bottom edge. Then he moved the entire strip down to his finger, and pro-
ceeded in this way to iteratively mark off four equal segments of A.

Another student, Tj, folded C into three long strips instead of four
short strips (see Fig. 7.8b). When Ti finished with his demonstration of ad-
ditive congruence, and C was unfolded, the fold lines clearly divided the
rectangle into a 4 X 3 array of squares (see Fig. 7.8d). This was not noticed
by the class until Ms. C. asked: “How come it took Mic four strips and
only took Ti three?”

While the class pondered this problem, Ti was counting “1, 2, 3,
..., 127 When Ms. C. asked him to clarify what he meant, Ti replied,
“Twelve squares! That makes a quilt!”

A second student pointed excitedly to A and said, “Then it takes 12
squares to make that.” Ms. C.’s question instigated a transition in strategy
from additive congruence to units of measure. Before, the children were
talking in terms of cutting up shapes and rearranging figures, but at this
point they were talking about the number of core squares in a quilt. The
children went on to verify that each of the three forms could be composed
of exactly 12 square units or core squares. Ms. C. then posed an additional
problem of designing as “many shapes as you can” composed of 12 core
squares. She used computer software as a tool for letting children freely
explore the idea that appearances can be deceiving (e.g., different looking
forms can cover the same amount of space) and recognized units of mea-
sure as good conceptual tools for addressing this problem.

Ms. C. also used this task as a forum for considering other forms of
argument. For example, in another class, one student, Sa, proposed a form
of transitive inference—by folding and covering, the class had established
that rectangle A and rectangle B each covered the same amount of space
(A = B), and also that rectangles B and C each covered the same amount of

T P

R TR R PR R

b= g

FIG. 7.8. Folding C to measure A,
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space (B = C). Consequently, Sa suggested that this must mean that A and
C also covered the same amount of space. Ms. C. then asked the class to
consider this “without testing,” meaning that she wanted them to estab-
lish how to verify a conjecture based on a chain of propositions, rather
than simply to test its truth empirically.

Ms. C. noted that, at the end of the lesson, children “were using a
square in the conventional way (of measuring area) but they were using it
in a meaningful way and then they were able to make sense of other area
problems ... it's a kind of bridge between a standard unit of measure and
a personal unit of measure.” Here Ms. C. was drawing a contrast between
textbook problems that assume that conventional square units of area
measure are conceptually transparent versus her recall of the constructed
nature of the square unit in her classroom.

Area of Hands

Following the construction of a unit of measure for the area of a familiar form
like a rectangle, Ms. C. posed the problem of rank-ordering the “amount of
space covered” by individual students’ hands to help children “cement” the
utility of a unit of area and to explore the qualities of different potential units
of measure. Ms. C. suggested that “the hand doesn’t lend itself to thinking
about squares of space, as quilts do.” (She knew from our research that chil-
dren prefer units of area measure that perceptually resemble the figure being
measured.) She also indicated that the task provided opportunities for chil-
dren to develop strategies for finding area when the form does not lend itself
to easy partitioning into subregions, especially the problem of “what to
do with the leftovers” (units that are fractional pieces). The task was ill-
structured, in that size, material (real hands or representations), and method
were all unspecified.

As Ms. C. anticipated, the task provoked considerable discussion
about appropriate units of measure. Children first tried to solve the
problem by adapting the strategy that had worked to determine the con-
gruence of the three rectangles: They superimposed pairs of classmates’
hands. They discarded this approach as both too time-consuming and
perhaps fatally flawed. As one child said, “What do we do with fat
thumbs and thin fingers?,” indicating that handprints are not uniform,
and direct comparisons are, therefore, difficult. This prompted children to
consider working from a representation of a hand, rather than working di-
rectly with hands. A prolonged discussion eventually led to adoption of a
classroom convention about tracing hands on construction paper. There-
after, children worked with paper representations in lieu of hands.

Children then attempted to develop a unit of measure. As Ms. C. an-
ticipated through her knowledge of children’s thinking, most of the chil-
dren’s inventions resembled perceptual features of the hand in some
way: beans, fingernails, spaghetti, and rope were all considered and sub-
sequently rejected. Children’s reasons for rejection helped them better
understand fundamental properties of area measure. For example, chil-
dren found that using beans wasn’t satisfactory: Two different attempts
to use beans as units to measure Gl's hand led to two widely different
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quantities; beans “leave cracks” (a reference to the space-filling principle
of area measure); “beans are not all the same” (a reference to the identical-
units principle of area measurement); and so on. As children deliberated
about their choices, it became clear that they found none of their
inventions satisfactory—all violated one or more of the canons of mea-
surement that they had decided were important.

At this point, Ms. C. held up a piece of grid paper marked off in
squares and asked children: “Could we use this as a tool?” Most replied
very emphatically no, suggesting that squares did not look anything like
hands. One child disagreed with the others and said yes, because the
squares were all the same (identical units), and they didn’t have any
“cracks” (space-filling). At this point, another child agreed but noted, “I
see a problem-—there will be leftovers.” After explaining to her peers the
nature of the problem, another child proposed a solution: Use different
colors to estimate parts that would constitute a whole. For example, 7/s of
one “leftover” might be combined with approximately /s of another to
constitute one whole. Both pieces were marked with the same color (e.g.,
purple), and then other pieces would be identified and marked with dif-
terent colors (e.g., 1/2 and 1/2 marked red). This system of notation did
not quantify the part-whole relation {children never wrote /s or 1/2), but
it did help children keep track of their estimates.

By the end of this lesson, children had confronted some fundamen-
tal issues involved in constructing a unit of area measure, most especially
the need for combining identical units, the importance of space-filling,
and the irrelevance of resemblance for judging the merits of a unit of mea-
sure. Children invented a system of notation to record their estimates
about combining the “leftovers,” a process that helped many see that area
measure need not be confined to integer values. Most especially, children
were able to see measurement do some real work; their deliberations led
to a rank-ordering of all of the handprints in the class.

Ms. C. noted that the task also led children to reflect again about
area measure, “distinguishing between that kind of measurement [some
children first proposed using length measure, e.g., the span of the hand]
and what area really is, and they quickly saw that they had to have a way
to quantify how much space that [the handprint] covers.” As she antici-
pated, the lesson helped children reflect about the need and functions of
units of area measure: “I find that kids, when you do this with them,
want something that is going to fill in the tips of the fingers, like beans or
fingernails. They wrestle with beans and fingernails, then they figure out
that they need things the same size and with complete cover.” Ms. C.
pointed out that the latter properties of units of area measure (that they
be identical and space-filling) were tacit in the core squares of the three
rectangles task, but were made explicit in this task.

Area of Islands

Several weeks after rank-ordering the area of hands, children each drew
their own “islands,” during a unit on geography. They then attempted to
rank-order the area of each island. Ms. C. chose this task as a follow-up to
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the area of the hand, partly because she believed that children needed to
explore further the fundamental properties of area measure that they had
discovered in the previous lesson (“another context for making sense of
why area measure might matter”), and partly because she wanted to intro-
duce children to a notational system for keeping track of the pieces in-
vented in another classroom (“They needed a chance to work with those
parts of squares again”). She also believed that the strategy of simply su-
perimposing objects would be more obviously unwieldy, and children
would, therefore, be more likely to consider units-of-measure strategies
rather than congruence strategies.

Although this lesson was also rich in mathematical talk and pro-
vided children further opportunities for exploring principles of area mea-
sure, the lesson was perhaps most noteworthy for children’s use of their
previously invented notations to measure the area of each island. Chil-
dren’s first ideas about measuring area mobilized (Latour, 1990) their pre-
vious “color matching” strategy to deal again with the problem of the left-
overs (the fractional pieces of area measure), and they reached consensus
quickly about the virtues of again employing square-grid paper as a mea-
surement tool. At this point, Ms. C. introduced a new notational system,
invented in another class, where students symbolized all part-whole rela-
tions (e.g., 1/4,1/2,1/3), filled all equivalent fractions with the same color,
and then combined the pieces to make whole units. This alternative nota-
tional system put another cast on composed congruence: A whole unit
could be constituted in a variety of ways, but each of these ways could be
shared symbolically, not just indexically. In the first system, there were
also multiple ways of making a whole unit, but each composition had to
be considered by shared visual regard and represented the judgments of
individuals. In the second notational system, each composition was more
easily communicated because it could be shared symbolically, and it ap-
pealed to conventional representations (i.e., fractional pieces) rather than
idiosyncratic representations of part-whole relations.

Ms. C. continued to emphasize understanding and reflection, not
simply doing: “[The task provided opportunities for students]” to deepen
their understanding of why it mattered for them to think about those left-
over parts. And what it was that they were actually doing, which was
making those parts into whole units so that you could account for all the
space.”

Area of Zoo Cages

Children designed a zoo and investigated ways to redesign the city zoo (a
project being undertaken by the city). Within this context, Ms. C. posed a
problem of comparing the areas of different zoo enclosures on a large
sheet of paper displayed on the blackboard (see Fig. 7.9). She suggested that
the task provided opportunities for students to revisit the conception-
perception mismatch of the three-rectangles task and to re-represent the
idea of area measure symbolically, as a multiplication of lengths. In this in-
stance, students were not provided any tools except a ruler.
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FIG.7.9. Redesigning a zoo: units of area measure.

The conversation began with one student’s assertion that two of the
rectangles were “exactly the same.” Other students took this as an asser-
tion that the two rectangles were congruent. To test this idea, students pro-
posed superimposing one rectangle on the other, but Ms. C. did not per-
mit students to cut out the rectangles. Another student proposed that if
two rectangles were congruent, then their corresponding sides would
have the same measure. This student used the ruler and found that the
measure of one rectangle was 5 X 8 in. and the other, 4 X 10 in.:

Ms. C.: So the whole Shape E and the whole Shape F-—you’re saying that
Shape E and Shape F are the same?

Ca: Not shapewise, but they take up... they both take up the same
amount of space.

Ms.C.: OK. Ca is saying that he thinks Shape E and Shape F cover the
same amount of space. He’s saying they’re not the same shape ex-
actly—he says they look different, and we just measured two
sides and showed that they’re different.

Ca: Four times 10 is 40 so that means it covers up 40 inches, and then
8 times 5 is 40, so it covers up 40 inches.

Classmates asked Ca what he meant by “covers 40 inches” because
what they saw was a pair of rectangles whose longest side was 10 inches.
Another child got up and worked with Ca, and together they partitioned
each rectangle into 40 square inches, demonstrating two forms of array
multiplication: 4 groups of 10 and 10 groups of 4. The conversation then
turned to how multiplication of length resulted in units of area, and the
class discussed whetiier or not this principle was true for all rectangles. By
the end of the lesson, children had again recast their knowledge of units of
area measure—what was formerly known primarily by finding appropri-
ate material means for covering a space had been reconstituted symboli-
cally as multiplicative length.
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Student Learning

At the end of each year, we administered items like those posed in the
Lehrer et al. (chap. 6, this volume) clinical interviews to children in the
three classrooms. The first wave of the Lehrer et al. longitudinal sample
provided a baseline for describing second-grade children’s conceptions of
area measure, and the last wave provided a look at typical patterns of de-
velopment for these second graders (then in the fourth grade). Against
this baseline, we contrasted children’s development within the target
classrooms as indicated by their performance at the beginning and end of
the second grade with respect to their strategies for finding the area of ir-
regular forms, as well as important ideas in area measure, like space-
filling (area units should tile the plane). Measurement of these compo-
nents of area measure at the beginning of the year indicated marked sim-
ilarity in profiles for the longitudinal and target classroom samples. How-
ever, inspection of Fig. 7.10 suggests significant differences by the end of
the year; the average performance of children in the target classrooms ex-
ceeded that of both waves of the longitudinal sample.
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0 Avoids Recognizes Uses Uses Additive  Finds Measure
Area/length Space-Filling Identical  Strategiesfor  of regular
Contusion Units Measure Shape

Area Concepts

L] Grade 2 - Longitudinal sample
Grade 4 - Longitudinal sample
M Grade 2 - Geometry

FIG. 7.10. A comparison of children’s understandings of area concepts.
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Reprise

The sequence of tasks invented by Ms. C. helped children progressively
elaborate and mathematize their informal knowledge about area and its
measure. The first task, involving comparisons among three rectangles,
invited a conflict between perception (“it looks like”) and conception (the
mathematics of congruence). Ms. C. exploited this tension to motivate
practical inquiry built around children’s ideas about additive congruence
(reallotment, i. e., different arrangements of the same spatial regions do
not change area). This practical inquiry took the form of folding and rear-
ranging subregions of the three rectangles, with the eventual emergence
of the idea of a unit of measure as children folded one of the rectangles
into three congruent pieces vertically and four congruent pieces horizon-
tally. Interestingly, Ms. C. made the equivalence of these two different
forms of folding problematic for children; measure emerged from chil-
dren’s resolution of the impasse.

The next two tasks designed by Ms. C. point to the important roles
played by tools and notations in the development of understanding of
space. When children attempted to rank-order the area of their hands, the
very availability of a resource like beans seduced children into investi-
gating its measure properties. Children’s discovery of difficulties with
beans led to greater understanding of two fundamental principles of area
measure: identical units and space-filling (tiling the plane). During their
investigation, children invented a notational system that helped them
both estimate and record fractional pieces. This notational system was ap-
plied again during their investigations of the area of islands, but this time
an alternate notation was introduced (symbolic representation of frac-
tional pieces) by Ms. C. Children adopted the alternative notation because
it proved easier to conventionalize (the rules about what counted as one
unit were less idiosyncratic and more communal) and, therefore, easier to
communicate with others. Consequently, children had the opportunity to
reflect on the uses and purposes of mathematical notation even as they
elaborated their ideas about area and its measure. The last task in the se-
quence (zoo cages) provided children further opportunity to confront
once again the conflict between perception and conception, but this time
the resolution was developed at a symbolic, and hence generalizable,
plane. Rather than reallot units of measure, children could simply multi-
ply lengths to obtain a single quantity that revealed unambiguously
whether or not two shapes “covered the same amount of space.”

Collectively, these tasks illustrate a spiral of design that started with
children’s informal understanding and built successively on the history of
the understandings they developed as they solved the problems posed by
these tasks. The tasks provided frequent opportunities for emergent goals
(e.g., in the three-rectangles task [the first task], issues about squares and
rectangles emerged; in the last task, issues about the associativity property
of multiplication emerged) even as they provided sufficient structure and
constraint for the development of productive mathematical thinking. The
tasks also afforded forums (e.g., appearance vs. reality) for the invention
of systems of notation in the service of progressive mathematization of
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everyday experiences. All of the tasks provided frequent opportunties for
classroom conversations centered around sharing strategies, making and
justifying conjectures, and exploring different forms of mathematical ar-

gument.

CONCLUDING COMMENTS

We embarked on a program to redesign geometry education in the pri-
mary grades in such a way that young children had the opportunity to de-
velop a mathematics of space even as they were developing a mathemat-
ics of number. The cornerstones of our work were commitments to
mathematizing children’s informal knowledge about space and support-
ing teachers’ professional development. Each teacher devoted substantial
resources to develop a professional identity congruent with instruction
rooted in understanding children’s thinking, and every teacher partici-
pated in a small, but generative, community that provided opportunities
to elaborate those professional identities. The development of a commu-
nity of practice was fostered by a series of in-service workshops that em-
phasized cases of student reasoning, by the conduct of collaborative re-
search, and by teacher authoring. ‘ o

Teachers’ practices reflected a consistent set of design principles.
First, teachers invented or appropriated problems and tasks that were
rooted in children’s informal understandings of space, a practice consis-
tent with the Dutch realistic mathematics education (see Gravemeijer,
chap. 2, this volume). For example, children all had ideas about what
makes designs like quilts interesting, and their interest in form and pat-
tern provided a rich springboard for the mathematics of transformation
and symmetry. Similarly, all children at one time or another experienced
conflict between appearance and reality, and teachers skillfully helped
children develop the mathematics of area as an explanation for why some
forms looked different, yet covered the same amount of space.

Second, teachers continually promoted children’s inventions of
ways to depict and represent space. These depictions were not merely dis-
plays; rather, they were tools for developing mathematical arguments. For
instance, children’s invented notations for horizontal flips (“up-down”
flips) helped them distinguish and describe which aspects of a physical
motion were worth preserving mathematically. Other notations connected
spatial and number sense: Recall, for instance, children’s dlscu5519n§ of
odd and even numbers of flips, and their explorations of array multiplica-
tion as they thought about measuring areas of rectangles through multi-
plication of length and width. _

Third, teachers promoted forms of classroom conversation that
helped children develop understanding about space. In these classrooms,
the roles of talk were many and diverse. Talk served to help children de-
velop a mathematical language that fixed and anchored mathematically
important elements of space, (e.g., properties of figures). This function of
talk played an important role in mathematical generalization: What was
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first known primarily through perception, common visual regard, came to
be known and shared through talk. Classroom talk was also a vehicle for
argument and justification. Much of the classroom talk supported what
logicians refer to as suppositional argument: reasoning about “true”
propositions purely for the sake of argument. This form of reasoning is
sustained by adopting a supposition “for the sake of the argument” and
then considering what its consequences would be (Levi, 1996). For exam-
ple, during the conversation about three rectangles in Ms. C.’s class, one
student proposed that form C was a square. She responded, “If C is a
square, what must be true?” Suppositional argument requires mainte-
nance of relationships among what is judged true, what is judged false,
and what “hangs in suspense.” In this instance, children were uncertain
about the status of C, although it did look like a square. So they decided to
treat C as if it were a square, and then decided that the student’s conjec-
ture was false because they found that C’s properties were not consistent
with those of a square. (One child drew a line congruent with one side and
rotated the figure to test for congruence of sides.) Reasoning about the tri-
partite balance among true, false, and conditional beliefs can be difficult to
establish and sustain, even for adults and older children. Yet this form of
argument is indispensable to mathematical modeling: What-ifs serve as
axioms, and mathematicians explore their consequences.

Classroom conversations also played a key role in helping children
articulate a sense of the history of their thinking: Teachers often asked stu-
dents to narrate how they came to know something. Such narratives
helped children develop identities as mathematical thinkers whose men-
tal efforts led to a progressive elaboration of understanding about space.
Classroom conversations were the primary means by which mathematical
instruction became dialogic, in the sense intended by Bakhtin (1981) and
Wertsch (1991). Children came to know as they participated in dialogue,
either directly with a peer or with the teacher, or indirectly in relation to
some shared supposition (usually established by past practice in the class-
room). Classroom talk helped children develop voice (a speaking con-
sciousness) about what they understood first informally and intuitively.

Last, teachers’ orchestration of curriculum tasks, tools, notations,
and classroom talk was guided by their continually evolving understand-
ing of student thinking. Ms. C.’s design of tasks to promote children’s un-
derstanding of area and its measure and her continued attempts to help
children reflect on their thinking about area and its measure suggest a
form of teaching that hinged on her “reading” of student understanding.
In each of the classrooms we observed, the evolution of student thinking
was matched by a corresponding evolution in teachers’ understanding of
the pedagogical implications of student thinking.

Our observations of these classroom-based cases of the progressive
elaboration of student understanding about space suggest the need for a
reexamination of pedagogical policies and practices that ignore the math-
ematics of space in the primary grades. The opening chapters of this vol-
ume indicate that spatial reasoning and visualization are essential to
mathematics. In addition to its central role in mathematics, for many chil-
dren, spatial reasoning provides a more accessible entrée to powerful
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mathematical ideas like conjecture, proof, and refutation. The lesson
seems clear: Space and geometry are best introduced early in schooling
and thereafter maintained as a central part of learning and understanding
mathematics. But whatever the point of departure, space and number can
be mutually constituted only by children who are afforded opportunity to
reason about them jointly.
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APPENDIX: EXAMPLES OF ITEMS FOR INDIVIDUAL ASSESSMENT

Area of a Rectangle

Figu’re 7.A1 disple'ays a paper-and-pencil item designed to assess chil-
dren’s understanding of finding the area of a rectangular polygon.

2cm,

1 om.

L]

How many squares will cover the rectangle?

FIG.7.A1.  Paper-and-pencil item for finding area of regular polygon.
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FIG. 7.A2. Interview item on finding area of irregular figures.

Area of Irregular Figure

Students found the area of the irregular figure shown in Fig. 7.A2. Stu-
dents were offered tools such as a graph paper transparency (divided into
squares 2 cm on a side), an overhead marker, a ruler, and a length of string.

Included in the interview protocols were scaffolds to assist students
in developing a strategy for solving the problem:

Int:  Can you find out how much area this shape has? If the student
does not recognize the word “area, "ask how much it would take
to “cover” exactly this shape.

Scaffold: ~ Offer the student the graph transparency and pen and ask,
“Would this help you find the answer?”

Figure 7.A3 shows a student’s solution (at the end of the school year)
to the area problem shown in Fig. 7.A2. Note her strategy of aggregating
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FIG. 7.A3. Example of student solution to finding area of irregular figure.
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pieces of the figure that individually did not cover an entire square (e.g.,
two 19s at the top of the figure, each numbered inside a half-covered
square.) By this student’s estimate, the area of this figure is 24 squares.

Transformations

Figure 7.A4 displays a paper-and-pencil item designed to assess produc-
tion of one-step transformations on a simple core square. To probe students’
understandings of transformations, we presented strips and core squares
(see Fig. 7.A5) and then asked students to compose the transformations
that would make the strip.

This item also included several levels of scaffolds—a verbal prompt, an
identical core square as a manipulative, and modeling of the movement:

Here is a picture of one quilt square from a quilt we are making.

Color in the figure below what Color in this figure below
the quilt square looks like after what the quilt square looks
an "up-down flip." like after a "right turn of 90."

FIG. 7.A4. Pencil-and-paper item on one-step transformations.
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FIG. 7.A5. Interview item that examines students’ understandings of transformations, based
on recognition rather than on performance.

Int: For each of the motion strips, ask the student, “What did we do to
make this design with this core square?” or “Can you find the pat-
tern we used to make this long quilt?”

Scaffolds
Levell “What kinds of motions do you know about?”
“Could it be turns (C1)? flips (C2)? or both (C3)?”
Level I  Offer the core square to the student.
“Would this help you to figure it out?”
Level I Model the first movement (only) for the student.
“Do you think you could show me how the rest are made?”

8

Development of Geometric
and Measurement Ideas

Douglas H. Clements
State University of New York at Buffalo

Michael T. Battista
Kent State University

Julie Sarama
Wayne State University

The separation of curriculum development, classroom teaching, and math-
ematics educational research from each other has vitiated each of these ef-
forts. We are working on several related projects, the aim of which is to
combine these efforts synergistically. The first! is a large-scale curriculum
development project that emphasizes meaningful mathematical problems
and depth rather than exposure. Our responsibility (and goal) in this pro-
ject is to develop the geometry and spatial-sense units in this curriculum
based on existing research on children’s learning of mathematics as well as
our own classroom-based research on children’s learning within the con-
text of formative evaluations of the curriculum. The second project? has the
related goal of conducting research on children’s learning of geometric and
spatial concepts in computer and noncomputer environments.

The curriculum unit, discussed in this chapter, Turtle Paths (Clements,
Battista, Akers, Woolley, Meredith, & McMillen, 1995), engages third-grade
students in a series of combined geometric and arithmetic investigations

Unvestigations in Number, Data, and Space: An Elementary Mathematics Curriculum, a co-
operative project among the University of Buffalo, Kent State University, Technical Educa-
tion Research Center, and Southeastern Massachusetts University (National Science Founda-
tion grant no. ESI-9050210).

2An Investigation of the Development of Elementary Children's Geometric Thinking in Com-
puter and Noncomputer Environments (National Science Foundation Research grant no. ESI
8954664).
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