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ABSTRACT

Despite its widespread applicability, the multiple-baseline design remains an underused
approach in the educational researcher's methodological bag of tricks. The new analytical tool
described here is sharper than previously proposed multiple-baseline nonparametric statistical
approaches, in at least two different respects. First, it is sharper conceptually and
methodologically than the Marascuilo and Busk (1988) approach, insofar as it maintains the
basic integrity of the multiple-baseline design, namely the systematically staggered introduction
of the intervention across replicates. Second, the present analytical tool is sharper statistically
than either of the previously proposed multiple-baseline randomization procedures (Revusky,
1967; Wampold & Worsham, 1986), in that: (a) it is statistically practicable with fewer replicates
(N < 4); and (b) it can be shown to be more sensitive to patterns that reflect desired, as well as
other typically observed, effects of an educational or clinical intervention. Moreover, the
“number of permutations” formula related to the specific research application described here
(KL,) is shown to be a special case of an all-encompassing formula (KL,), which provides the
researcher with a flexible analytic tool that can take into account the methodological and

statistical tradeoffs alluded to above.

Paper presented at the annual meeting of the American Educational Research Association,
New York, April 1996.



Multiple Baseline, p. 2
A Sharper Analytical Tool for the Multiple-Baseline Design
Matthew J. Koehler and Joel R. Levin
University of Wisconsin — Madison
Background
Despite its widespread applicability, the multiple-baseline design remains an underused
approach in the educational researcher's methodological bag of tricks. This is puzzling insofar
as the design satisfies critical empirical validity criteria in a variety of research contexts —
specifically, internal validity, discriminant validity, and, to some extent, external validity (see, for
example, Kazdin, 1992; and Levin, 1992a). Two particularly fertile areas of application include
single-case interventions (which originate from clinical "behavior analysis" studies) and
classroom- or other group-based educational interventions.
The multiple-baseline design may be diagrammed in adapted Campbell and Stanley (1966)
notation for four experimental "units" as follows:
L T, T, T, T
U, O1lo0O10 1010
U, O Ol1O0I101O0
U, O O oO1l1010
U, O O O o1l1o
where: the Ts represent time periods; | represents the intervention; O represents a measured
outcome; and the Us represent the units or replicates to which the intervention is administered
(usually an individual or group).
Thus, the experimental intervention begins %&195« to the first measured outcome at Time 1
with the first randomly determined individual or group, while the remaining units serve as
nonintervention controls. (Alternatively, any Os prior to the introduction of the intervention

belong to that unit's "baseline” phase, whereas those following the intervention belong to the
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unit's "intervention” phase.) The intervention is maintained for the first unit for the remainder of
the time periods. The intervention for the second unit commences just prior to Time 2 (while
Units 3 and 4 serve as controls) and continues throughout the duration of the study.
Observations or measures are taken within each time period and are used to assess between-
and/or within-unit changes in performance.

Relative to competing single-case designs, the multiple-baseline framework is noteworthy
for its qualities of internal validity (concerning plausible rival hypotheses that could account for -
intervention effects), replication/generalization (across units) and selectivity/discrimination (in
producing the desired effects of the intervention). That is, if it can be demonstrated on logical
or statistical grounds that a replicable effect is selectively produced during the targeted
intervention phases while other potentially contributing variables are controlled, then one's
confidence in the intervention's efficacy is enhanced (Levin, 1992b, pp. 216-217). The same
degree of confidence is not as easily inspired by alternative single-case designs - incuding the
replicated AB design, to be mentioned shortly.

Previously Proposed Statistical Procedures

A variety of statistical procedures have been proposed to analyze the data from multiple-
baseline designs. These procedures fall primarily into two general classes, those based on
time-series models and those incorporating a permutation (or nonparametric randomization)
rationale. In this paper, we consider only the latter of these two general classes. Earliest of the
nonparametric procedures was the straightforward method of Revusky (1967), which entails
determining the joint probability of independent between-unit outcomes. Next came the

“approach of Wampold and Worsham (1986), which arguably improved both the
appropriateness and precision of the analysis by incorporating a within-unit comparison
component. In these initial randomization-based statistical approaches, the "phased in"

intervention is assumed to occur at certain constant times (e.g., immediately, after 3 weeks,
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after 6 weeks, after 9 weeks). What is randomized is the order in which the units receive the
phased-in intervention (i.e., units are randomly assigned to the points at which the intervention
is first introduced). Adopting a fundamentally different randomization notion for single-case
experiments, Edgington (1975) had earlier proposed an ingenious design-and-analysis
procedure for the basic unreplicated AB design (where A and B are baseline and intervention
phases, respectively) — or, consistent with the above notation, OO O ... 101010... The
novelty of the Edgington approach consists of the kind of randomization demanded of the
researcher, specifically that the particular time period (T) for introducing the intervention must
be determined randomly, in advance of the study. Thus, in a study containing 12 time periods,
rather than the researcher deciding to provide six baseline periods followed by six intervention
periods, randomization according to the Edgington model might produce 10 baseline periods
followed by two intervention periods. The Edgington model does allow a researcher to specify
the minimum number of within-phase observations that are required, which is taken into
account in the analysis. Moreover, Onghena (1994) has derived the general numerical form of
Edgington's restricted randomization procedure, which can be fruitfully applied to randomization
analyses of other single-case and small-sample designs. Indeed, the restricted randomization
notion was adapted, though in a different sense, to the multiple-baseline model that is
presented here.

More recently, Marascuilo and Busk (1988) extended the Edgington (1975) approach to
incorporate baseline (A) vs. intervention (B) comparison data from more than one unit by
computing a joint probability. They do this in a perfectly appropriate manner for the "replicated
AB" design and their analysis is a powerful one. However, there is the sense (conveyed by the
authors themselves both in the title of their article and the discussion and examples contained

therein) that the same analysis can be routinely applied to the multiple-baseline design. There
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is a conceptual shortcoming with that argument, however, which is summarized in the following
paragraph.

The beauty and logic of the multiple-baseline design lie in the credibility and discriminant
validity associated with its temporal contiguity and sequencing of the units. That is: (1) At the
same point in time that one or more units is receiving the intervention, other units are still in the
baseline phase; and (2) The intervention is phased in sequentially to the randomly designated
units. Because of these temporal features, various threats to the design's internal validity can
be easily dismissed. The same cannot be said of replicated AB designs. At one extreme, it is
not even necessary that the replications take place concurrently; the different units' data could
be collected at entirely different points in time, even in different settings or sites. At the other
extreme, with the Edgington model as applied by Marascuilo and Busk, depending on the "luck
of the draw" it would be possible for all units to receive the intervention close to, or exactly at,
the same points in time. For example, in a four-unit, 12-period design, it could happen that the
four units were randomly selected to commence their interventions just prior to Times 4, 5, 4,
and 6, respectively. Such an unfortunate coincidence would serve to eliminate the desired
discriminant validity provided by the multiple-baseline's staggered and balanced introduction of
the intervention. Moreover, were the units to consist of classrooms within a school,
simultaneous scheduling of an instructional intervention might well be an unwanted
consequence, if not an impossibility. Thus, although well-suited to the generalized or replicated
AB design, the Marascuilo and Busk (1988) solution is one that does not fit well with either the
conceputal basis, the esthetic character, or the practical implementation of the multiple-baseline
design.

A Sharper Analytical Tool (KL,
The sharper analytical tool discussed in this section can be thought of most easily as a

modified version of the Wampold and Worsham (1986) approach. It is one that retains the
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basic integrity of the multiple-baseline design, while at the same time capitalizing on two
randomization schemes for the analysis: (1) the random assignment of replicates to the
different points at which the intervention is to be phased in, as is required for both the Revusky
(1967) and Wampold-Worsham analyses; and (2) the determination of a specific intervention
"start point” for each unit, based on a random selection from a designated interval of acceptable
start points within the unit's assigned phase-in stage — representing a novel adaptation of
Edgington's (1975) notion of a "minimum phase length." The subsequent nonparametric
statistical analysis takes advantage of these two randomization components, thereby improving
its sensitivity relative to the earlier nonparametric randomization alternatives. With each of
these procedures, the analysis consists of determining the likelihood of the obtained outcome —
that associated with the difference between intervention and control units and/or intervention
and baseline phases — and those outcomes more extreme, relative to all outcomes that could
have been produced (i.e., given all possible randomizations of the data).

To provide a hypothetical example of this dual randomization scheme vis-a-vis the single
one that is inherent in the previous Revusky (1967) and Wampold and Worsham (1986)
procedures, consider the multiple-baseline intervention study outlined in Table 1, which
contains N = 3 classrooms and T’ = 6 outcome-assessment time periods (excluding T,, which
includes the initial baseline assessment). According to both of the previous statistical
procedures, the associated randomization distributions consider a total of N! possible rank-
ordered outcomes (Revusky) or intervention vs. baseline mean differences (Wampold &
Worsham), which for this example is equal to 3! = 6. Let us now add the component of
randomly selecting either of two (k = 2) designated potential staggered multiple-baseline start
points for each classroom, namely: prior to either T, or T, for the first randomly assigned
classroom, between that and either T, orT, for the second classroom, and between that and

either T, or T, for the third classroom. The randomization distribution associated with the
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present statistical procedure now considers a total of N! x k" possible intervention vs. baseline
mean differences, which for this example is equal to 3! x 2° = 48,

The effect of increasing the number of randomization outcomes possible is to increase the
sensitivity of the present approach, relative to its competitors, with respect to detecting
intervention effects. A unique advantage of this can be seen in the present example: Neither
the Revusky nor the Wampold-Worsham procedure is capable of detecting an intervention
effect based on a < .05. The minimum sample size required for either of those procedures is
N = 4 units; for this example, the best that one could do with N=3 is a = 1/3} = 1/6 = .167. In
contrast, with the present approach, one could detect a statistically significant (a < .05)
intervention effect with N = 3 units and k = 2 potential start points, in that a study that yielded
either of the two most extreme differences in the expected direction would be associated with
o =2/312%=2/48 = .0417. For N = 3 units and k = 3 potential start points, the eight most
extreme differences could bg included in the rejection region, for a = .049. Indeed, the present )
procedure is capable of detecting an intervention effect based on a < .05 with only N = 2 units,
as long as there are at least k = 4 potential intervention start points for each unit. Consistent
with our previous discussion, however, with as many potential start points as in the latter two
cases, one could begin to lose control of the important "temporal contiguity” character of the
multiple-baseline design. For a summary comparison of the three nonparametric procedures
discussed here, see Table 2.

Although the dual randomization scheme is the one that initially motivated the present work,
the associated “number of possible outcomes” formula will henceforth be referred to as KL,. As
will now be shown, that is because KL, is subsumed by a more general statistical formula for
the multiple-baseline design (dubbed KL,), which is able to encompass all of the previously

proposed randomization approaches.
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A General Statistical Model for the Multiple-Baseline Design (KL,) |

" The specific dual randomization multiple-baseline model just discussed can be subsumed
by KL,, a more general statistical model." In addition to the previously given N = the number of
units and T° = the number of outcome assessment periods (excluding the initial baseline
assessment), for this model we need to specify P = the desired number of partitionings of the T’
assessments, k, = the number of potential start points per partition, and n, = the number of units
per partition. With these specifications, the number of possible outcomes associated with each

of the previously discussed multiple-baseline schemes can be determined from KL, as:

P P
with 2 k=T and Y n=N.

1l'=o1 illustrate, w;—;econsider our example for which N = 3 units are to used in a study with
T’ = 6 post-baseline assessment outcomes (T, - T;). In addition, we specify that these 6
outcomes are to be partiﬁdnéd into P = 3-gfbups, withkk1 =k,=Kk;=2 interv‘erntioh' start pointé

per partition and n, = n, = n; = 1 unit randomly assigned to each start point. Accordingly, there

are.

3| (7— ) (2) ( 2) = 6(2)(2)(2) = 48
131\

randomization outcomes (intervention-baseline mean differences), as was determined through
the more specialized KL,. Note that this general formula can be readily adapted to situations in
which T cannot be equally divided into the P partitions. In the present example, suppose that
only T" = 5 assessment outcomes are possible, rather than 6. In addition, the researcher
decides that k = 2 potential start points are to be associated with the first partition, k = 1 with the
second partition, and k = 2 with the third partition. All other specifications are the same. With

these changes, the total number of possible intervention-mean differences would be reduced by

a factor of two (i.e., halved), as can be seen in the following KL, calculation:
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o) {3 -seroe-

What is more, it can be seen from Table 3 that, with some terminological modifications, the
“number of possible outcome” calculations associated with all of the previously proposed
nonparametric multiple-baseline approaches can be reproduced by the present general formula
(KL,). As is summarized in Table 4, the present KL approach (restricted start point
randomization for each unit) represents a methodological compromise between that of
Marascuilo and Busk (1988), with its complete start point randomization for each unit (i.e., no
randomization restrictions), and that of both Revusky (1967) and Wampold and Worsham
(1986), with its absence of start point randomization for each unit (i.e., no randomization). As a
result, the present approach would be expected to lead to statistical improvements over the
latter two.2 In addition, the present general approach allows for the possibility of incorporating
more than one unit at each specified partition (i.e., per-partition replications, or n, > 1).

At the same time, it should be noted that with the increased flexibility afforded by this
approach comes the potential for ethical abuses. For example, following a “clyose, but not
statistically significant outcome,” a researcher might be tempted to reconduct the analysis
based on some number of within-partition potential start points even when start-point
randomization was not incorporated into the study as conducted (i.e., when the traditional
multiple-baseline approach was employed). Such potential for researcher misconduct needs to
be taken into consideration and balanced against the previously indicated strengths of the
present approach.

Actual Research Application

We now describe an empirical research application of the present procedure, in a study
conducted by the first author of college students’ ability to identify the strategies used by young
children when solving mathematics story problems. The study compared the utility of

computer-based hypermedia training materials with traditional text-based instruction. The
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lesson outlined research findings about young children's solution strategies for addition and
subtraction word problems. Students in the baseline phase received a training manual that
contained only text. During the intervention phase, students received a hypermedia version of
the training materials (for purposes of this example, the design is based on N = 4 students).

The materials in this phase contained essentially the same content as the baseline phase text
materials, but also included video examples of children solving word problems to augment the
text examples. After each of the periods of study, students were administered a computer task
that required them to freely arrange 12 text examples of children's solution strategies within a
3 x 4 grid. Students’ sorts were scored on a 0-14 point scale, with higher scores reflecting an
organization more consonant with the conceptual model presented in the training materials.
This ideal organization uses one of the dimensions (the three-level dimension) to group
strategies of like developmental level, and uses the other dimension to group strategies used to
solve identical problem types. This grid used in the assessment is not presented in any form in
either the baseline or the treatment métérials. To asseés the effectivéness of the t\)&o
approaches, difference scbres between measurement points are used in the statistical analysis
so that rates of leaming can be investigated. K

Thus, for the present example, the data consist o@iﬁerence scores. In addition,
prior to the study, it was specified that the hypermedia phase would begin at T, for one of the
four students (k, = 1), at either T, or T, for one of the students (k, = 2), at either T or T, for one
of the students (k, = 2), and at either T, or T, for one of the students (k, = 2). The startpoints
randomly selected from those specified were T, T,, Te, and T;, and the four students were
randomly assigned to these. The data from the study are presented in Table 5, which yield an

observed statistic (an across-student average of the intervention minus baseline phase means)

of 1.11. According to KL,, with these specifications there are:

(- o= e
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possible permutations of the various mean difference outcomes. The value of 1.11 observed
here turns out to be the third most extreme in the predicted direction, which is therefore
associated with a one-tailed probability of 3/192 = .016.3 Accordingly, with a one-tailed test
based on a = .05, one could conclude that students gained more during the hypermedia
lessons than they did during the standard computer lessons.
Summary

In summary, the new analytical tool described here is sharper than previously proposed
multiple-baseline approaches in at least two different respects. First, it is sharper conceptually
and methodologically than the Marascuilo and Busk (1988) approach, insofar as it maintains the
basic integrity of the multiple-baseline design, namely the systematically staggered introduction
of the intervention across replicates. Second, the present analytical tool is sharper statistically
than either of the previously proposed multiple-baseline randomization procedures (Revusky,
1967; Wampold & Worsham, 1986), in that: (a) it is statistically practicable with fewer
experimental units (N < 4); and (b) it can be shown to be more sensitive to patterns that reflect |

desired, as well as other typically observed, effects of an educational or clinical intervention.
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Footnotes
We are most grateful to Carol Blumberg, who provided the impetus that prompted us to
uncover this generalization.
Such potential improvements are currently being investigated by the present authors. In
particular, we are examining the competing procedures' abilities to detect multiple-baseline
effects of various magnitudes (e.g., strong vs. weak) and types (e.g., immediate vs.
delayed), as a function of the number of outcome assessments, the number of randomized
units, and the width of the within-unit randomized start-point interval.
Macintosh-based software has been developed to incorporate the design and analysis, and

when in final form, will be made available to requesters.
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Table 1. lllustration of the Koehler-Levin Restricted Randomization Scheme for the

Multiple-Baseline Design (N=3, T'=T-1=6,and k= 2)

T, T, T, T, Ts Ts T,
c, opoOoOEFrOI OIL OI O1 O
c, O O oPrOEFOI OI O

C, O O O O O Pr Ok O

a Within each classroom, one of these two designated potential start points is randomly selected

as the actual start point for the intervention.
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Table 2. Minimum Number of Units (N), Outcome Assessments (7), and Potential
Intervention Start Points for Each Unit (k) In Order To Detect an Intervention

Effect Based on a < .05: Comparison of Three Nonparametric Multiple-Baseline

Statistical Procedures

Procedure Basis of Comparison N A k

Revusky (1967) Between Units® 4 3 1

Wampold-Worsham (1986) Between and Within 4 5 1
Units

Koehler-Levin (1996) Between and Within 3 7 2
Units

2 With the Revusky procedure, no pre-intervention outcome assessment period is necessary.
Moreover, for each successive unit, the intervention need not be continued beyond the first
outcome assessment following its introduction. These are two practical advantages of the

Revusky procedure that should be considered.
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Table 3. Application of The General Formula (KL,) to Various Multiple-Baseline

Nonparametric Procedures

Procedure Sample Specifications No. of Possible Qutcomes According to:
Original Formula KL,
. 6 6
Marascuilo-Busk (1988)2 N=3,T=6 6° =216 O'l4/\1/\4/ =216
1 1
Wampold-Worsham(1986)° N=3 31=6 3! (1) (11) (1)= 6
P=1k=1n,=1
AV IV
Revusky (1967)° N=3 3l=6 31/ 1/=6
P=1k=1n,=1

Note: N =the number of units (or randomized units in KL,); T’ = the number of outcome
assessment periods excluding the initial baseline assessment; P = the desired
number of partitionings of the T’ assessments; k; = the number of specified start

points per partition; and n, = the number of units per partition

? In the general formula, N = 0 because this model does not incorporate between-unit
randomization.
® In the general formula, k, and n, each equals 1 because within-unit randomization is not

incorporated (and, therefore, P = 1 fixed partition is used for each unit).
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Table 4. Comparison of Multiple-Baseline Nonparametric Procedures

Procedure Overlap Constraints  Internal Validity No. of Permutations
Marascuilo-Busk (1988)  None: Potential Low ™

for much phase
overlap among

units

Koehler-Levin 1 (1996) Mild: Small range Medium Pk
of phase overlap N 1T ( n )
among units =1

Koehler-Levin 2 (1996) Moderate: No phase  Medium to High?® NI x kN
: overlap among units

Wampold-Worsham (1986) Complete: No phase Very High NI
overlap among units

Revusky (1967) Complete: No phase  Very High N!
overlap among units

Note: T’ is one less than the number of outcome assessments (i.e., excluding the initial
baseline assessment). In the present case, we also assume that the number of
required baseline and intervention assessments is each set at the minimum possible,

namely 1.

2 With all else held constant, internal validity increases as k decreases.
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Table 5. Data (Difference Scores) from the Hypermedia Study, Excluding Initial Baseline

Phase (T,)
Student n T, T, T, T, T, T, T, AMean BMean Mz-M,
1 3 2 1 3 103 o -1 000 667 667
2 3 o 311 o 1 3 4 000 -200 @ -200
3 a3l1 3 0o 4 4 2 1 -3000 143 3.143
4 3 3 3 2 1 b1 1 167  1.000 833

Across-Student Means -.708 402 1.1

Note: lindicates the beginning of the hypermedia phase



