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Regulated Randomization:
A Potentially Sharper Analytical Tool for the
Multiple-Baseline Design

Matthew J. Koehler and Joel R. Levin

University of Wisconsin—Madison

A dual-randomization procedure, regulated randomization, is proposed for behav-
ioral and educational interventions that incorporate the logic of single-case mul-
tiple-baseline designs. The new approach is sharper conceptually and methodologi-
cally than previously developed approaches in that regulated randomization
maintains the basic integrity of the multiple-baseline design (namely, the system-
atically staggered introduction of the intervention across the experimental units)
while being statistically practicable with fewer units (N < 4). Moreover, previously
suggested nonparametric analyses of multiple-baseline data can be subsumed by a
general regulated randomization formula. The regulated randomization approach
provides researchers with a flexible analytic tool that can take into account specific
substantive, methodological, and statistical trade-offs.

Despite its widespread applicability, the single-case
multiple-baseline design remains an underused ap-
proach in researchers’ bag of tricks for behavioral and
educational interventions. This is puzzling insofar as
the design satisfies critical empirical validity criteria
in a variety of research contexts—specifically, inter-
nal validity, discriminant validity, and, to some ex-
tent, external validity (see, e.g., Kazdin, 1992, pp.
168-172; Levin, 1992a). Two particularly fertile areas
of application of the multiple-baseline design include
true single-subject interventions (which originate
from clinical behavior analysis studies) and class-
room- or other group-based instructional interven-
tions.

The multiple-baseline design is diagrammed in
adapted Campbell and Stanley (1966) notation for
four experimental units in Table 1, in which the Ts
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represent time periods,/ represents the intervention,
Os represent measured outcomes and Us represent the
experimental units to which the intervention is admin-
istered (usually individuals, small groups, or class-
rooms). Thus, for the first randomly designated indi-
vidual or group, the experimental intervention begins
following the first measured outcome at Time 1 (or
following a series of preintervention outcomes), while
the remaining units serve as nonintervention controls.
The one or more Os prior to the intervention belong to
that unit’s baseline (or A) phase, and those Os fol-
lowing the introduction of intervention belong to the
unit’s intervention (or B) phase. The intervention is
maintained for Unit 1 for the remainder of the time
periods. The intervention for the Unit 2 commences
following a later measured outcome, say, following
Time 3 (while Units 3 and 4 serve as controls) and
continues throughout the duration of the study. Units
3 and 4 are subsequently phased into the intervention
in a similar systematically staggered fashion (i.e., fol-
lowing Times 5 and 7, respectively). Observations or
measures are taken at each time period and are used to
assess between- and within-unit changes in pre- to
postintervention performance. _

Compared with competing single-case designs, the
multiple-baseline framework is noteworthy for its
qualities of internal validity (concerning plausible ri-
val hypotheses that could account for intervention ef-
fects), replication and generalization (across units),
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Table 1
Basic Multiple-Baseline Design for N = 4 Units
Time period

Unit T, T, T, T, Ts Ts T, Ty T,
U o0 1 O1 0 1 o O O 1 01 01 o
U, O 0] O 1 o O O 1 O 1 01 o
U, O 0] 6] (6] O 1 O1 01 01 O
u O O 6] O (0] 0 O 1 O 1 o
Note. T = time period; U = experimental unit (usually individuals or groups); [ =

intervention; O = measured outcome.

and selectivity and discrimination (in producing the
desired effects of the intervention). That is, if it can be
demonstrated on logical or statistical grounds that a
replicable effect is selectively produced during the
targeted intervention phases while other potentially
contributing variables are controlled, then one’s con-
fidence in the intervention’s efficacy is enhanced
(Levin, 1992b, pp. 216-217). The same degree of
confidence is not as easily inspired by alternative
single-case designs—including the replicated AB de-
sign, mentioned shortly.

But how does a researcher interpret the data pro-
duced by multiple-baseline designs? A historically
prevalent (and still prevailing) school of thought
among behavior analysts is essentially to let the data
from single-case intervention studies speak for them-
selves through graphical plots and visual comparisons
of the preintervention and postintervention phases’
constituent observation points (see, e.g., Hersen &
Barlow, 1976; Kazdin, 1992, pp. 340-348; Parsonson
& Baer, 1992). For example, a multiple-baseline
intervention effect might be inferred if, for each se-
quentially phased-in unit, a noticeable difference is
apparent between that unit’s preintervention and
postintervention observation series (i.e., between
phases A and B) with respect to either their respective
levels (e.g., means) or slopes (i.e., steepnesses). An-
other school of thought is that more formal, and as-
sumedly more objective data-analytic procedures
should be enlisted (e.g., Jones, Weinrott, & Vaught,
1978): inferential statistical procedures in particular.
We do not intend to either resolve or extend the
single-case analysis debate with the new method we
propose here. Neither do we claim that the method we
propose is the single best or “the” correct way to
analyze data from all multiple-baseline experiments.
In fact, we later spéciﬁcally acknowledge some of its
likely limitations. Rather, proposed here is what we
believe represents a novel analytical tool that (a) lends

itself conceptually and methodologically to many
multiple-baseline investigations and (b) has the po-
tential to be statistically superior to contemporary
competitors of the same genre. In short, the present
methodological-statistical approach is intended for
application specifically by multiple-baseline research-
ers who are receptive (if not already accustomed) to
conducting formal inferential statistical analyses of
their data.

Previously Proposed Statistical Procedures for
the Multiple-Baseline Design

As implied, a number of statistical procedures cur-
rently are being applied to the analysis of multiple-
baseline data. These procedures fall primarily into
two general classes: those based on time-series mod-
els and those incorporating a permutation-based (or
nonparametric randomization) rationale. Although
each class of procedures has its own specific advan-
tages and disadvantages (cf. Kratochwil], 1978), in
this article we consider only the latter of these two
general classes. In a nutshell, nonparametric analysis
of single-case data considers all DPossible intervention-
versus-baseline outcomes (derived from mathematical
combinations or permutations) given the study’s spe-
cific design and unit-assignment features and accord-
ing to the null hypothesis assumption of no interven-
tion effect. On the basis of all such possible outcomes,
one constructs a complete randomization distribution,
and the actual outcome’s location within that distri-
bution is noted along with its statistical probability.

Previous Nonparametric Analyses of
Multiple-Baseline Data

Earliest among the nonparametric procedures was
the straightforward method of Revusky (1967), which
entails determining the joint probability of indepen-
dent between-units outcomes. Next came the ap-
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proach of Wampold and Worsham (1986), which ar-
guably improved both the appropriateness and
precision of the analysis by incorporating a within-
unit comparison component. In these initial random-
ization-based statistical approaches, the phased-in in-
tervention is assumed to occur at certain, constant
times following the initial assessment (e.g., immedi-
ately, after 3 weeks, after 6 weeks, after 9 weeks).!
What is randomized is the order in which the units
receive the phased-in intervention (i.e., the order in
which units are randomly assigned to the different
predetermined start points of the intervention).

Edgington’s Randomization Model

Adopting a fundamentally different randomization
notion for single-case experiments, Edgington (1975)
proposed an ingenious design-and-analysis procedure
for the basic unreplicated AB design. Consistent with
the above notation, this can be diagrammed as

000...I0I0IO0...

or, more simply, by phase as
AAAA ...BBBB....

The novelty of the Edgington approach is the kind of
randomization demanded of the researcher, specifi-
cally, that the particular time period (T) for introduc-
ing the intervention must be determined randomly in
advance of the study (please refer again to Footnote
1). Thus, in a study containing 12 time periods, rather
than the researcher deciding to provide 6 baseline
periods followed by 6 intervention periods, random-
ization according to the Edgington model might pro-
duce an intervention start point between the 10th and
11th observations, thereby yielding 10 baseline peri-
ods and 2 intervention periods. The Edgington model

does allow a researcher to specify the minimum num- -

ber of within-phase observations that are required,
which is subsequently taken into account in the sta-
tistical analysis. Moreover, Onghena (1994) has de-
rived the general numerical form of Edgington’s re-
stricted randomization procedure, which can be
applied fruitfully to randomization analyses of other
single-case and small-sample designs. Indeed, the re-
stricted randomization notion has been adapted, albeit
in a different sense, to the multiple-baseline model
that is presented here.

Marascuilo and Busk’s Extension

More recently, Marascuilo and Busk (1988) ex-
tended Edgington’s (1975) approach to incorporate

intervention versus baseline phase comparisons from
more than one unit by computing a joint probability.
They did this in a perfectly appropriate manner for the
replicated AB design, and their analysis is a powerful
one. However, there is the sense (conveyed by the
authors themselves both in the title of their article and
in the discussion and the examples contained therein)
that the same analysis can be routinely applied to the
multiple-baseline design. There is a conceptual short-
coming with that argument, however, which is sum-
marized in the following paragraphs.

Problem

The beauty and logic of the multiple-baseline de-
sign lie in the credibility and discriminant validity
associated with its temporal contiguity and planned
systematic sequencing of the units (see our previous
discussion in this article and Kazdin, 1992, pp. 168-
172). That is to say (a) at the same point in time, one
or more units are receiving the intervention while
other units are still in the baseline phase and (b) the
intervention is phased in systematically and sequen-
tially to the randomly designated units. By virtue of
these features, various threats to the design’s internal
validity can be dismissed easily. However, the same
cannot be said of replicated AB designs. At one ex-
treme, it is not necessary that the replications take
place concurrently: The different units’ data could be
collected at entirely different points in time, even in
different settings or at different sites. At the other
extreme, with Edgington’s (1975) model as applied
by Marascuilo and Busk (1988), dependent on the
luck of the draw, it is possible for all units to receive
the intervention close to or exactly at the same points
in time. That circumstance could cloud a key desired

- property of multiple-baseline designs—namely, clear

temporal separability of the replicated intervention ef-
fects:

! This fixed and predetermined number of baseline ob-
servations for each unit is a stipulation that is not univer-
sally accepted by multiple-baseline researchers out of the
behavior-analytic tradition. Many such researchers argue
that the length of the baseline phase for each unit should be
individually determined in the context of the investigation
itself and should be based on how long it takes for the
particular unit to achieve a “‘stable’” set of baseline obser-
vations (Kazdin, 1992, p. 169). We later return to this issue,
as it is one that has direct implications for both the statistical
analyses and the conclusions that follow from them.

P
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The multiple-baseline design demonstrates the effect of
an intervention by showing that behavior change accom-
panies introduction of the intervention at different points
In time. . .. A causal relation between the intervention
and behavior is clearly demonstrated if each response
changes only when the intervention is introduced and not
before. (Kazdin, 1992, pp. 168-169)

For example, in a four-unit, 12-period design, with
the Marascuilo and Busk (1988) approach, it might
happen that the four units are randomly selected to
commence their interventions just prior to Times 4, 5,
4, and 6, respectively. Such an unfortunate start-point
determination would serve both to reduce the internal
validity and to eliminate the desired discriminant va-
lidity provided by the multiple baseline’s systematic,
staggered introduction of the intervention. In addition,
if the units are classrooms within a school, simulta-
neous scheduling of an instructional intervention
might well be an impractical logistical consequence if
not an impossibility. Thus, although well suited to the
generalized or replicated AB design, the Marascuilo—
Busk solution is one that does not fit well with the
conceptual basis, the aesthetic character, or the prac-
tical implementation of the multiple-baseline design.

The Marascuilo-Busk (1988) approach essentially
represents a sampling (of intervention start points)
with replacement randomization scheme across units.
Yet the same concerns as just expressed also apply to
a sampling without replacement framework.> Sup-
pose, for the above example, that Times 4, 5, 3, and 6
result from sampling 4 of 12 potential start points
without replacement. Alternatively, suppose that
Times 2, 3, 4, and 11 happen to be selected for the
same example. Although some would not view out-
comes of this kind as worrisome consequences of ran-
dom selection, others (including the present authors)
would be bothered by either the near simultaneous
intervention start points for all of the replicates (in the
first case) or the unsystematic staggering of the inter-
vention introduction (in the second case) in a mul-
tiple-baseline design. Overlap and stagger issues of
the kind just mentioned remain an interpretive con-
cern.” With the decision to stagger the intervention
start points systematically and at clearly separable in-
tervals, one is essentially adapting a blocked random
assignment strategy to the present context. Such a
strategy is incorporated into traditional between-
groups experiments for purposes of (a) similarly en-
hancing the study’s internal validity (e.g., by control-
ling for potential temporal factors associated with
treatment administration), (b) increasing the precision
of the statistical analysis, or (c) both. Blocked random

assignment is the basis of the multiple-baseline strat-
egy proposed here.

Regulated Randomization:
A Potentially Sharper Analytical Tool

The new procedure developed in this section can be
thought of most easily as a modified version of the
Wampold and Worsham (1986) approach. It is one
that retains the basic integrity of the multiple-baseline
design while capitalizing on two randomization
schemes for the analysis: (a) the random assignment
of units to the different points at which the interven-
tion is to be phased in, as is required for both the
Revusky (1967) and Wampold—Worsham analyses,
and (b) the determination of a specific intervention
start point for each unit based on a random selection
from a designated interval of acceptable start points
within the particular unit’s assigned phase-in stage, an
adaptation of Edgington’s (1975) notion of a mini-
mum phase length. The subsequent nonparametric
statistical analysis takes advantage of these two ran-
domization components, thereby improving its logic
and sensitivity relative to the earlier nonparametric
multiple-baseline alternatives. With this dual-com-
ponent regulated randomization procedure, the analy-
sis consists of determining the likelihood of the ob-
tained outcome—that associated with the difference
between intervention and baseline phases-—and those
outcomes as extreme as or more extreme than that
obtained relative to all outcomes that could have been
produced (i.e., given all possible permissible random-
izations of the data).

To provide a concrete example of the dual regu-
lated-randomization scheme as opposed to the single
scheme characteristic of the previous Revusky (1967)
and Wampold and Worsham (1986) procedures, we
consider the multiple-baseline intervention study out-
lined in Table 2. This example contains N = 3 class-
rooms as experimental units observed across 10 out-
come-assessment time periods (T). According to both
of the earlier statistical procedures, the associated ran- -
domization distributions would consider a total of N!
possible rank-ordered outcomes (Revusky, 1967) or

2 This point was made by a reviewer of an earlier version
of this article.

3 Nonetheless, we give additional consideration to this
suggested sampling-without-replacement approach in a fol-
lowing section.
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Table 2
Regulated Randomization Scheme for the Multiple-Baseline Design (N = 3 and k = 2)
Time period

Unit T, T, T, T, Ts T, T, Tg T, T
¢, or om® o101 orpr o1l o1 o1 o1 O
c, O O (6] or®r omr ol ol o1 01 O
C; O 0 0 O (6] O o ronr o1 O
Note, T = time period; C|, C,, and C; represent ¥ = 3 different classrooms; I = intervention; O =

measured outcome.

* With the present procedure, one of the two designated potential start points is randomly selected as the
actual start point for the intervention within each classroom.

intervention-versus-baseline mean differences (Wam-
pold & Worsham, 1986), which, for this example, is
equal to 3! = 6. Our method adds the component of
randomly selecting either of two (k = 2) designated
potential staggered multiple-baseline start points for
each classroom: prior to either T, or Ty for the first
randomly assigned classroom (C,), between that and
either Ts or Ty for the second classroom (C,), and
between that and either Ty or Ty for the third class-
room (C;). The distribution associated with the pre-
sent regulated randomization procedure considers a
total of N! x &V possible intervention-versus-baseline
mean differences, which, for this example, is equal to
31x 2% = 48 (i.e., eight times as many randomization
outcomes as there are in the two earlier approaches).

A hypothetical data set based on these specifica-
tions and randomization test calculations, are pre-
sented in Table 3 and Table 4, respectively. We fur-
ther assume that the actual intervention start points,
randomly selected, are just prior to T, for Classroom
1, T¢ for Classroom 2, and Ty for Classroom 3. In
Table 4 (test calculations), over the data-set columns
are specified the eight permissible start-point combi-
nations given the preceding regulations. The unit-
order column specifies the six possible permutations
of three classrooms. Included in Table 4 are baseline

Table 3

Hypothetical Data Associated With the Design in Table 2
Unit O, O, O; O, Os Oy O, O3 Oy Oy
cC, 4 3@ 5 7 6 8 7 8 9 7
¢, 6 7 5 6 6 7" 10 9 10 10
¢ 9 9 7 10 10 8 9 12° 11* 14

Note. C,_jrepresent N = 3 different classrooms; O, _,, represent

measured outcomes across 10 different observation periods (T, o).
* First observation associated with unselected intervention start
point.

® First observation associated with selected intervention start point.

phase (A) and intervention phase (B) means, listed by
classroom permutation and corresponding to all per-
missible intervention start-point combinations. Also
included are the mean B — A differences along with
the ranks of those differences (R), with largest R = 1
and smallest R = 48. We illustrate the calculations
for the first set of summary statistics in Table 3, which
correspond to potential intervention start points just
prior to T,, Ts, and Ty for Classrooms 1, 2, and 3,
respectively. If Classroom 1’s intervention actually
had begun just prior to T,, then the A mean for that
classroom would be the single outcome of 4, or 4/1 =
4.000. Similarly, intervention start points just prior to
Ts and Ty for Classrooms 2 and 3 would yield respec-
tive A means of (6 + 7 + 5+ 6)/4 = 6.000 and (S +
9+7+ 10+ 10+ 8+9)/7 = 8.857. Across the three
classrooms, the combined A mean is therefore given
by (4.000 + 6.000 + 8.857)/3 = 6.286. With the same
potential intervention start points, the respective B
means are calculatedtobe 3+5+7+6+8+7 + 8
+9+ 79 = 6667, (6+7+10+9+ 10+ 10)/6 =
8.667,and (12 + 11 + 14)/3 = 12.333, for a combined
B mean of (6.667 + 8.667 + 12.333)/3 = 9.222. The
difference (B — A) in these means is, therefore, equal
to 9.222 — 6.286 = 2.936 = 2.94, which turns out to
be the 7th largest difference in the set of 48. Likewise,
with the three intervention start points just prior to T
for Classroom 1, Tg for Classroom 2, and Ty for
Classroom 3 (i.e., 03040, combined with C,C,C,),
the mean B — A difference would be equal to 3.43,
which represents the largest of all 48 possible mean
differences. Because this difference is the one asso-
ciated with the intervention start points that were ac-
tually randomly selected for the three classrooms, one
can conclude, with p = 1/48 = .021 (one-tailed), that
there is evidence for higher performance after the in-
troduction of the intervention than before it (i.e., a
positive intervention effect).
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Table 4
The 48 Possible Randomization Outcome Sets Associated With the Design in Table 2
Unit
order M, My Mg-M, R My My Mg-M, R M, My Mg-M, R M, My Mg-M, R
0,050, 0,050, 0,0404 - 0,050,
CC,Cy 629 922 2.94 7 642 9.28 2.86 8 6.29 940 3.11 5 642 946 3.04 6
C,CC, 649 9.00 2.51 20 6.58 9.11 2.53 19 6.57 9.04 2.47 23 6.67 9.16 2.49 21
C,C,C; 6354 920 2.67 14 6.67 9.26 2.59 16 6.62 9.30 2.68 13 6.75 9.36 2.61 15
C,CC, 682 9.06 2.23 32 692 9.17 2.25 31 690 9.16 2.25 30 7.00 9.27 2.27 29
C,C,C, 682 881 1.99 38 6.92 838l 1.90 42 6.90 8.86 1.95 40 7.00 8.86 1.86 44
C,G,C, 690 88 198 39 700 889 189 43 690 907 216 34 700 907 207 36
050504 03050, 030404 050505
C,CCy 612 938 326 3 625 943 318 4 6.12 955 343 1® 625 9.61 336 2
CCC, 632 915 283 10 642 926 2385 9 640 920 279 12 6.50 931 238l 11
C,CCy 670 924 254 18 683 929 246 24 6.79 934 255 17 692 939 248 22
C,CiC, 682 910 228 28 692 921 229 27 690 920 229 26 700 931 231 25
GCC, 699 885 18 45 708 885 176 47 7.07 889 182 46 717 889 173 48
GC,Cp 690 893 203 37 700 893 193 41 690 9.11 220 33 700 911 211 35

Note. C, 5 represent N = 3 different classrooms; O, , represent observation periods selected and then randomized to produce the eight
possible start-point order indexes, which in turn are cross-tabulated with the six classroom order indexes to produce the above 48 data sets;

A = baseline phase; B =

intervention phase; R = ranked mean difference.

* Ranked mean difference corresponding to the selected intervention start point.

The consequence of increasing the number of pos-
sible randomization outcomes in the present regu-
lated-randomization approach is its increased capacity
to detect intervention effects relative to those capaci-
ties of its competitors. A unique advantage of this can
be seen in the present example, in which neither the
Revusky (1967) nor the Wampold and Worsham
(1986) procedure is capable of detecting an interven-
tion effect based on a Type I error probability, a, of
.05 or less. The minimum sample size required for
either of those procedures is N = 4 units; for this
example, the best that one could do with N = 3 units
is « = 1/3! = 1/6 = .167. In contrast, with the
present approach, one can detect a statistically signifi-
cant (a =< .05) intervention effect with N = 3 units
and & = 2 potential start points per unit (as was just
demonstrated); a study that yields either of the fwo
most extreme differences in the expected direction
can be included in a rejection region with o = 2/3123
= 2/48 = .0417 (one-tailed). For ¥ = 3 units and &
= 3 potential start points per unit, the eight most
extreme differences can be included in the rejection
region, for a = 8/3! 3% = .049. Indeed, the regulated
randomization procedure is capable of detecting an
intervention effect based on a < .05 with only N =
2 units as long as there are at least k = 4 potential
intervention start points for each unit. In light of our
preceding ‘‘internal validity’” discussion, however,
with as many potential start points as in the latter two

cases, one could begin to lose control of the important
temporal contiguity character of the multiple-baseline
design. For a summary comparison of the three ran-
domization procedures discussed here, see Table 5.

The regulated randomization example just dis-
cussed is the one that initially motivated the present
work. As shown in the following discussion, however,
the associated number-of-possible-outcomes formula
is a special case of a more general formula for the
multiple-baseline design, which is able to encompass
all of the previously proposed randomization ap-
proaches.

A General Randomization Model for the
Multiple-Baseline Design

The specific regulated randomization multiple-
baseline model under consideration generalizes to a
two-component randomization model for which N =
the number of units and k; = the number of potential
start points associated with the ith unit’s partition.
With these dual specifications, the number of null
hypothesis—compatible possible outcomes associated
with each of the previously discussed multiple-
baseline schemes can be determined simply as

N
N ]«
=1

ey
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Table 5
Comparison of Three Nonparametric Multiple-Baseline Statistical Procedures
Procedure Basis of comparison N T k
Revusky (1967) Between units 4 3.5 i
Wampold and Worsham (1986) Between and within units 4 5 {
2

Regulated randomization®

Between and within units 3 7

Note. Minimum number of units (¥), outcome assessment periods (T), and potential intervention start
points for each unit (k) in order to detect an intervention effect are based on a < .05.

3 With the Revusky procedure, if only raw postintervention outcomes (rather than standardized or
regression-adjusted outcomes) are analyzed, no preintervention ouicome assessment period is necessary.
Moreover, if only raw, standardized, or adjusted postintervention outcomes are analyzed (rather than
within-unit, preintervention vs. postintervention differences), for each successive unit, the intervention
need not be continued beyond the first outcome assessment following its introduction. These are two
practical advantages of the Revusky procedure that should be considered.

® As discussed in text, the minimum requisites here can be further reduced with a more general regulated

randomization procedure.

To illustrate, we reconsider our example for which
N = 3 units are included in a study with T = 10
outcome assessment periods. In addition, we again
specify that these 10 periods are to be separated into
three start-point partitions (T,~Tj3, Ts—Tg, and Tg~Ty)
so that each partition contains k;, = k, = k3 = 2
potential intervention start points. Accordingly, there
are 31(2)(2)(2) = 3! x 2° = 48 randomization out-
comes (intervention-baseline mean differences), as
was determined through the special-case regulated
randomization procedure. Note that the general regu-
lated randomization Formula 1 can be readily adapted
to situations in which T (here, number of assessment
periods) cannot be equally divided into the specified
number of partitions. In the present example, suppose
that only T = 6 assessment periods are possible rather
than T = 10. In addition, suppose that the researcher
decides that k; = 2 potential start points are to be
associated with the first partition (following an initial
baseline assessment), k, = 1 with the second parti-
tion, and k; = 2 with the third partition. All other
specifications are the same. With these changes, the

Table 6

total number of possible intervention mean differ-
ences would be reduced by a factor of two (ie.,
halved) as can be seen in the following calculation
based on Formula 1: 3!(2)(1)(2) = 24. Note that in
terms of the regulated randomization test minima
specified in Table 5, application of the present un-
equal start-point specifications (namely, k; = 2, k, =
1, and k; = 2) would reduce the minimum number of
required outcome assessments from T = 7to T = 6.

What is more, it can be seen from Table 6 that, with
a few terminological modifications, the number-of-
possible-outcomes calculations associated with all of
the previously proposed nonparametric multiple-
baseline approaches can be reproduced with Formula
1. As is summarized in Table 7, the present approach
(with regulated start-point randomization for each
unit) represents a methodological compromise be-
tween that of Marascuilo and Busk (1988), with its
complete start-point randomization for each unit (i.e.,
no randomization restrictions), and those of Revusky
(1967) and Wampold and Worsham (1986), with their
absence of start-point randomization for each unit

Application of the General Regulated-Randomization Formula to Various Multiple-Baseline Nonparametric Procedures

Sample specifications

No. of possible outcomes

Procedure N k, k, k, according to Formula 1
Marascuilo and Busk (1988)* 3 6 6 6 0! (6)(6)(6) = 216
Sampling-without-replacement analog to Marascuilo~Busk® 3 6 5 4 Q! (6)(5)4) = 120
Wampold and Worsham (1986)° 3 1 1 1 3T(DHAXD =6
3 1 1 1 3N(D(IXD) =6

Revusky (1967)°

Note. N = the number of units (or randomized units in the regulated-randomization approach); k; = the number of specified start points

associated with each partition.

2 In the general formula, ¥ = O because this model does not incorporate between-units randomization. ® In the general formula, all &, = 1
because within-unit randomization is not incorporated (i.e., & = 1 fixed partition is used for each unit).



REGULATED RANDOMIZATION 213

Table 7
Comparison of Multiple-Baseline Nonparametric Procedures

Procedure Overlap constraints

Internal validity No. of permutations

None: potential for much phase
overlap among units

Marascuilo and Busk
(1988)
Regulated randomization

(general formula) among units

Regulated randomization

Mild: small range of phase over lap

Moderate: no phase overlap among

Low vy

N
Mm%
=]

Medium

N x kY

(special case) units Medium to high®
Wampold and Worsham Complete: no phase overlap among
(1986) units Very high N
Revusky (1967) Complete: no phase overlap among
units Very high M

Note. T’ is one less than the number of outcome assessments (Le., excluding the initial baseline assessment). In the present case, we also
assume that the numbers of mandatory baseline and intervention assessments are each designated pre-experimentally to be the minimum

possible, namely 1.

* With all else held constant, internal validity increases as k decreases.

(i.e., no within-unit randomization). As a result, the
present regulated randomization approach might be
expected to lead to statistical improvements over the
latter two. Conceptually, the present regulated ran-
domization Formula 1 combines a between-units ran-
domization component (N!), as is incorporated into
the Revusky and Wampold—~Worsham procedures,
with a within-unit randomization component,

N
I«
=]

as is incorporated into the Marascuilo-Busk extension
of Edgington’s (1975) procedure (as well as the sam-
pling-without-replacement analog).

An even more general regulated randomization for-
mula, which allows for nonoverlapping within-
partition replications, can be given as

N
w1 ®
Pl
where n; represents the number of nonoverlapping
units associated with the ith partition. Although this
replication adaptation has some statistical and imple-
mentation advantages associated with it (including the
fact that the number of outcome assessments does not
need to be increased for a fixed number of units), its
application is not illustrated here because it dimin-
ishes certain of the methodological niceties of the
multiple-baseline design (as was discussed previ-
ously). Note that for the nonreplicated version of the
design, where n, = 1 for all partitions, the second
(combinatorial) piece of Formula 2 reduces to the

corresponding piece of Formula 1, in that (¥) =  for
each partition.

Research Application

We now describe a research application of the pre-
sent regulated randomization procedure derived from
a study of college students’ ability to identify the
strategies used by young children when solving math-
ematics story problems (Koehler & Lehrer, in press).
The actual study, conducted with 6 college students,
compared the utility of computer-based hypermedia
training materials with traditional text-based instruc-
tion. (For illustrative purposes, the present example is
based on N = 4 students, and modified data are used.)
The lessons outlined research findings about young
children’s solution strategies for addition and subtrac-
tion word problems (Carpenter, Fennema, Peterson,
Chiang, & Loef, 1989). A total of T = 9 individual
sessions was held with each student. Students in the
baseline sessions received a training manual that con-
tained only text. During the intervention sessions, stu-
dents received a hypermedia version of the training
materials. The materials in these sessions featured es-
sentially the same content as the baseline-session text
materials but also included video examples of chil-
dren solving word problems to augment the text ex-
amples. After each of the periods of study, students
were administered a computer task that required them
to arrange freely 12 text examples of children’s solu-
tion strategies within a 3 x 4 grid.

Students’ sorts were scored on a 15-point-scale (0~
14), with higher scores reflecting an organization
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Table 8

Session-to-Session Gains in the Hypermedia Study

Student T, T, T, Ts Ts T, T, T, My Mg Mg-M,
1 3 -2 1 -3 1 3 0 -1 0.00 0.67 0.67
2 3 -3 01 1 0 -1 3 -4 000 -020 -0.20
3 -3 1 -1 3 0 —4 4 -2 1 =300 0.14 314
4 3 -3 3 -2 1 -1 1 1 1 017 1.00 0.83

Across students

-0.71 040 1.1l

Note. T = training assessment period (T, is excluded); A

I indicates the beginning of the hypermedia phase.

more consonant with the conceptual model presented
in the training materials. The ideal organization uses
one of the grid's dimensions (the three-level dimen-
sion) to group strategies of like developmental level
and uses the other (four-level) dimension to group
strategies used to solve identical problem types. This
grid used in the asséssment is not presented in any
form in either the baseline or the treatment materials.
To assess the effectiveness of the two approaches, we
incorporate into the statistical analysis difference
scores (gains) between measurement points so that
rates of learning can be investigated.*

Thus, for the present example, the data consist of
the T— 1 = 8 difference scores. In addition, suppose
that prior to the study, it was specified that the hy-
permedia sessions would begin at T, for 1 of the 4
students (k, = 1), at either T; or T, for another of the
students (k, = 2), at either T or T for yet another of
the students (k; = 2), and at either T; or Ty for the
remaining student (k, = 2). The start points randomly
selected from those specified were T, T, Ty, and T,
and the 4 students were randomly assigned to these.
The adapted outcome data are presented in Table 8,
and they yield an observed statistic (an across-
students average of the intervention-minus-baseline
session means) of 1.11. According to Formula 1, with
these specifications, there are 4!(1)(2)(2)(2) = 192
possible permutations of the various mean-difference
outcomes. The value of 1.11 observed here turns out
to be the third most extreme in the predicted direction,
which is therefore associated with a one-tailed prob-
ability of p = 3/192 = .016.° Accordingly, with a
one-tailed test based on @ = .05, one could conclude
that students gained statistically more during the hy-
permedia lessons than during the standard text les-
somns.

Discussion

As noted previously, the present regulated random-
ization design-and-analysis approach affords greater

[

= baseline phase; B hypermedia (treatment) phase;

flexibility and coherence relative to previously sug-
gested multiple-baseline alternatives (e.g., Marascuilo
& Busk, 1988; Revusky, 1967, Wampold & Wor-
sham, 1986), but does it have potential to exhibit
greater precision under a variety of patterns of change
over time? The term potential is carefully chosen in
that we are currently examining both the present and
competing procedures’ abilities to detect multiple-
baseline effects of various magnitudes (e.g., strong vs.
weak) and types (e.g., immediate vs. delayed), each as
a function of such factors as the number of random-
ized units, the width of the within-unit randomized
start-point interval, the number and type of outcome
assessments, and the stability of the baseline series.
The last two of these factors are briefly elaborated on
in turn.

Sensitive Summary Measures

One yet-to-be-resolved issue concerns the use of
baseline and intervention means in this and other
single-case randomization analyses, which might be
argued are not appropriately sensitive to the effects of
an intervention, especially when the number of pre-
and postintervention observations is large. Regardless

4 A difference score approach is particularly appropriate
for time-series situations in which a stable preintervention
baseline is difficult or impossible to achieve: as, in the
present example, when improvement would be expected to
occur from one preintervention assessment period to the
next. The present regulated randomization procedure can
readily accommodate difference scores as well as other
measures (e.g., within-classroom slopes, covariate-adjusted
means).

3 Macintosh-based microcomputer software has been de-
veloped by the authors to accommodate the design and
analysis options associated with Formula 2 and, when in
final form, will be made available on request.
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of the general merit of that argument, randormization
analyses can readily be adapted to address such
concerns. For example, suppose that (a) either the
units consist of relatively large aggregates (such as
classrooms) or each observation is a relatively stable
one (such as a reliable multiple-item test score) and
(b) immediate preintervention to postintervention
changes are anticipated. In such cases, one could base
the present randomization analysis on, say, just the
one or few observations immediately preceding and
following the intervention rather than on the pre- and
postintervention complete series means as was illus-
trated here. In reference to Table 8, for example, if
only the single differences on each side of the actual
intervention start point are examined, the obtained
effect would consist of 3 ~ 1 = +2, 1 — (=3) = +4,
—~1-(=3) = +2,and 1 - (=1) = +2 for Students 14,
respectively, for an across-student mean effect of 10/4
= +2.5. This would then be referred to the distribu-
tion of all 192 possible randomization outcomes based
on just the two observations that immediately precede
and follow the intervention, which, in this case, turns
out to be one of the 10 most extreme positive out-
comes, for a one-tailed significance probability of p
= .052 (compared with the p = .016 reported when
the test was based on mean differences). Although we
are not inclined to advocate the single-observation of
few-observations approach in general (because of the
likely lowered reliability associated with it), some
might wish to consider that approach when the two
conditions specified above are met.® However, from a
practical standpoint, with this selected observation
strategy, T observations still need to be collected for
all N units even though not all of those observations
are incorporated into the analysis, which might be
regarded as wasteful (of either money or data).

Baseline Phase Considerations

Let us now return to the important distinction be-
tween allowing the length of each unit’s baseline
phase to be flexibly determined within the context of
the actual investigation (which many behavior ana-
lysts would advocate) versus establishing it on a priori
basis either through specification or randomization
(an assumption underlying all of the statistical tech-
niques discussed here). This philosophical difference,
in fact, boils down to whether or not one subscribes to
the notion that formal statistical analyses should be
conducted on single-case (here, multiple-baseline)
data rather than, say, the more informal visual analy-
ses that were mentioned previously. Often, the philo-

sophical difference translates into defensible trade-
offs between statistical concerns (typically for the
staunch data analyst) and substantive-scientific con-
cerns (typically for the stauch behavior analyst). Even
though all of the statistical analyses discussed here
would be compromised to varying degrees by data-
based baseline-phase determinations, modifications of
these procedures can be made to accommodate the
behavior analyst’s desire to establish a stable baseline
for each unit prior to introducing the intervention or
the unit.

One such modification that readily comes to mind
would be for the researcher to decide not to begin the
randomization process (i.e., not to determine each
unit’s intervention start point) until all N units have
achieved a stable baseline. In a 4-unit design, if it
takes nine observation periods before all 4 units dem-
onstrate a stable baseline, with the present approach,
one could wait until after the ninth observation period
and then randomly determine for each unit at which of
k potential start points beyond that period the inter-
vention should commence.” Alternatively (and as we
have suggested in Footnote 3), in learning situations
in which improvements within the baseline phase
would be expected (and thus achieving a stable base-
line would not be expected), a researcher can circum-
vent the stable-baseline concern by analyzing differ-
ences between adjacent observations—or even
between slopes of the complete intervention and base-
line phases—rather than between intervention and
baseline means based on all of the associated within-
phase observations. The former (adjacent difference)
measures reflect differential amounts or degrees of
improvement in the context of continual improvement

© Although not elaborated on here, another recently of-
fered suggestion in a related single-case context is that all
within-series differences be based on the same constant
number of both pre and post observations—in contrast to
the standard Edgington (1975) approach of taking complete-
series mean differences. With the latter approach, different
means based on differing numbers of observations are nec-
essarily associated with different stabilities, which can be
shown to have unwanted consequences on the randomiza-
tion distribution and its test statistic (Levin & Wampold,
1997).

7If achieving a stable baseline for each unit is deemed
important, the Marascuilo and Busk (1988) approach can be
similarly modified to allow for the sequential random se-
lection of one of T, intervention start points for each unit as
that unit’s baseline series stabilizes.
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and thus are conceptually appropriate in such con-
texts.

Multiple-Baseline Design Specifications

Another important statistical-versus-substantive
trade-off needs to be mentioned before concluding.
We reiterate that the regulated randomization proce-
dure introduced and described in this article is not the
only one that can be applied to the analysis of mul-
tiple-baseline-like data. It is not necessarily even the
best in the class of nonparametric competitors. From
a purely statistical perspective, for example, both the
Marascuilo and Busk (1988) sampling of start points
with replacement and its sampling without replace-
ment analog can be shown to have a greater number of
possible randomization outcomes than the present
procedure and thus might be claimed to be more sen-
sitive to effects of an intervention. We counter that
statistical criteria are not the only factors that count
here. Indeed, the present dual-randomization proce-
dure itself represents an attempted balance of dual
concerns: (a) responsiveness to the intervention dem-
onstration-and-interpretation standards of both the be-
havior analyst and the methodologist and (b) improv-
ing the statistical performance of the associated
analysis relative to currently available nonparametric
alternatives (i.e., those of Revusky, 1967, and Wam-
pold & Worsham, 1986). Procedures that open the
door to overlapping, near-overlapping, or unsystem-
atic intervention stagger (i.e., those of Marascuilo &
Busk and the sampling-without-replacement variation
discussed earlier) are not likely to be universally em-
braced by multiple-baseline behavior analysts and
methodoiogists. However, if potential start-point ad-
jacencies or irregularities are either not a critical con-
cern or necessitated by a reduced number of outcome
observation periods, then a sampling-without-replace-
ment randomization approach represents a reasonable
methodological—statistical compromise between the
Marascuilo-Busk procedure and the one proposed
here. It should also be pointed out that the microcom-
puter program alluded to in Footnote 5 can handle any
of the design specifications mentioned here (including
replicated regulated randomization, discussed in con-
junction with Formula 2) and can perform the asso-
ciated randomization analyses. The only challenge,
therefore, is for the researcher to decide which of
these approaches is most applicable, acceptable, or
appropriate for his or her own particular single-case
situation.

Cautionary Comment

Finally, it should be noted that with the increased
flexibility afforded by regulated randomization comes
the potential for ethical abuses. For example, follow-
ing a close but not statistically significant outcome, a
researcher might be tempted to reconduct the analysis
on the basis of some number of within-partition po-
tential start points even when start-point randomiza-
tion was not incorporated into the study as conducted
(i.e., when the traditional multiple-baseline approach
was employed). Such opportunities for researcher
misconduct need to be taken into consideration and
weighed against the indicated strengths of the present
approach.

Conclusion

In summary, the new regulated randomization ana-
lytical tool described here is sharper than previously
proposed multiple-baseline approaches in at least two
different respects. First, it is sharper conceptually and
methodologically than the Marascuilo and Busk
(1988) approach, insofar as it maintains the basic in-
tegrity of the multiple-baseline design-—namely, by
the systematically staggered introduction of the inter-
vention across experimental units. Second, the tool is
sharper analytically than either of the previously pro-
posed multiple-baseline nonparametric procedures
(Revusky, 1967; Wampold & Worsham, 1986) in that
it is statistically practicable with fewer units (N < 4).
Whether it turns out to be sharper in a third respect—
in terms of its sensitivity to patterns that reflect de-
sired as well as other typically observed effects of an
educational or a behavioral intervention—is a critical,
yet-to-be-answered, question.
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