
Computers & Education 75 (2014) 72–81
Contents lists available at ScienceDirect
Computers & Education

journal homepage: www.elsevier .com/locate/compedu
Cognitive outcomes from the Game-Design and Learning
(GDL) after-school program

Mete Akcaoglu a,*, Matthew J. Koehler b,1
aWest Virginia University, College of Education and Human Services, 355 Oakland St., 506B Allen Hall, Morgantown, WV 26505, USA
bMichigan State University, Department of Counseling, Educational Psychology, and Special Education, 600 Farm Lane, Room 509,
East Lansing, MI 48824, USA
a r t i c l e i n f o

Article history:
Received 5 December 2013
Received in revised form
5 February 2014
Accepted 6 February 2014

Keywords:
Game-design
Problem-solving
Quasi-experimental
Constructionism
* Corresponding author. Tel.: þ1 304 293 4075.
E-mail addresses: meakcaoglu@mail.wvu.edu, met

1 Tel.: þ1 517 353 9287; fax: þ1 517 353 6393.

http://dx.doi.org/10.1016/j.compedu.2014.02.003
0360-1315/� 2014 Elsevier Ltd. All rights reserved.
a b s t r a c t

The Game-Design and Learning (GDL) initiative engages middle school students in the process of game-
design in a variety of in-school, after-school, and summer camp settings. The goal of the GDL initiative is
to leverage students’ interests in games and design to foster their problem-solving and critical reasoning
skills. The present study examines the effectiveness of an after-school version of the GDL program using a
quasi-experimental design. Students enrolled in the GDL program were guided in the process of
designing games aimed at solving problems. Compared to students in a control group who did not attend
the program (n ¼ 24), the children who attended the GDL program (n ¼ 20) showed a significant increase
in their problem-solving skills. The results provide empirical support for the hypothesis that participa-
tion in the GDL program leads to measurable cognitive changes in children’s problem-solving skills. This
study bears important implications for educators and theory.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the widely-recognized importance of problem-solving as a higher-order thinking skill, during formal schooling students do not
get many chances to solve complex problems that they face in their daily lives (Jonassen, 2004; Mayer &Wittrock, 2006). One reason for this
is that schools place a heavy emphasis on covering and delivering content knowledge. In addition, schools frequently introduce problem-
solving to students in the form of repetitive and well-structured problems (Perkins, 1986). Practice in well-structured problems (i.e.,
problems with one possible solution) do not help students in gaining skills to solve real-life problems, which are characterized as ill-
structured, complex, and having usually more than one solution (Jonassen, 2000).

Because of the shortcomings of formal education in teaching problem-solving skills, researchers and educators sought alter-
native ways to teach students skills necessary to solve complex problems (Mayer & Wittrock, 1996). One such alternative has been
using programming to teach problem-solving. Pioneered by Seymour Papert (1980), programming, and later software and game-
design, has received an important amount of attention both from researchers and educators. Papert (1980) argued that through
programming children get opportunities to “tinker” with objects, and in the process learn about their own thinking (Guzdial,
2004).

Recently, using game-design as a context to teach higher-order thinking skills has received interest from researchers (e.g., Hwang, Hung,
& Chen, 2013; Ke, 2014; Papastergiou, 2009), but empirical support for the cognitive benefits of these tasks has been slow to emerge
(Denner, Werner, & Ortiz, 2012). In this paper, building upon our previous work (Author, 2012), we aim to provide empirical support for the
impacts of learning game-design on students’ problem-solving skills, especially in system analysis and design, decision-making, and
troubleshooting.
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2. Background

2.1. Problem-solving

Problem-solving is reaching a desired goal state from a given state by overcoming barriers in between and when there are no obvious
ways of reaching the goal state (Mayer & Wittrock, 2006). By this definition, problem refers to situations when a problem solver has a goal
but does not have obvious methods to get there. The act of design, where the designer’s goal is to reach a desired goal state (i.e., the final
design) can be considered as an example of a problem situation (Smith & Boling, 2009).

The process of problem-solving involves activation of important cognitive skills, and therefore, problem-solving is often seen synony-
mous to thinking (Mayer, 1977). From a cognitive perspective, the problem-solving process involves representing, planning, executing, and
evaluating (Jonassen, 2004; Polya, 1957). Representing refers to converting the external representation of a problem into an internal mental
representation. This can also be equated with understanding the problem. Planning involves devising a solution, specifically by breaking the
problem into its components. Executing is putting the plan into action, and finally, evaluating refers to checking to see if the executed plan
actually helped get to the desired goal state.

2.2. Methods of teaching problem-solving

Researchers (e.g., Mayer & Wittrock, 1996, 2006) have identified methods that have proven to be effective when teaching problem-
solving. Some of these instructional methods can also lead to meaningful learning by helping students “to apply what they have learned
to solving new problems” (Mayer & Wittrock, 2006, p. 290).

Reviews by Mayer and Wittrock (1996, 2006) provided researchers and educators with a list of effective methods of teaching problem-
solving. One of themethods of teaching problem solving is teaching basic skills. According to this method, students are taught low-level skills
in order to give them more cognitive power to execute higher-level skills when tackling more complex problems (e.g., load-reduction
methods) (Mayer & Wittrock, 2006). Another method is teaching for understanding, which involves techniques like generative methods
where learners are led to think about the relationship between their existing and new knowledge. Teaching by using analogies is another
effective method to teach students problem-solving. In teaching by analogies, the aim is to show learners how problems that differ on the
surface can have structural similarities and can be solved using the same methods (Gick & Holyoak, 1980). Finally, teaching (metacognitive)
thinking skills is another method of problem solving, where the aim is openly showing the students important metacognitive skills that they
can use to solve problems. As it will be described later, during the GDL program, these methods were incorporated at varying degrees in
order to teach students problem-solving skills.

2.3. Problem types

Although by definition problems bear underlying structural similarities, there are different types of problems in terms of the cognitive
processes they require (Jonassen, 2000). Three specific types of problems that we specifically chose to investigate in this research were
system analysis and design, decision-making, and troubleshooting. These problem types were chosen because they are “widely applicable
and occur in a variety of [real-life] settings” (OECD, 2003, p. 2).

System analysis and design involves understanding the connection between parts of a system, and being able to create complex systems
by bringing together a number of interdependent variables to make a single, harmonious, and functional unit (Jonassen, 2000). In our daily
lives, we are faced with situations that ask us to analyze and/or design systems. For example, when people visit a new country or a city, a
common system analysis and design task is to understand the transportation system and figuring out the best, safest and cheapest ways to
travel around. Similarly, if one tries to learn a new language, the analysis of the target language can be categorized as a system analysis task
(i.e., figuring out the grammatical rules), while forming of new sentences would be “design,” because sentences can be formed in an infinite
number of ways (Chomsky, 1959). Finally, another common context where people make use of system analysis and design skills is science
jobs. For example, in order to identify an environmental or a medical problem, scientists analyze data, and look for patterns to understand
the “system” behind these problems. Solution to these problems, then, needs to be “designed,” because they are novel and unique, and the
existing solutions do not work. For example, to help Steve Jobs fight against his pancreas cancer, a team of scientists designed and developed
special medication that targeted slowing the growth of the cancerous cells in his body by analyzing the patient’s DNA structure (Isaacson,
2011).

Decision-making involves solving a dilemma (Jonassen, 2000). Solving a dilemma is a complex task, because dilemmas can be ill-
structured and “often there is no solution that is satisfying or acceptable to most people, and there are compromises implicit in every
solution” (p. 80). Similar to system analysis and design, decision-making problems are commonly found in our daily lives. Our daily lives are
filled with moments where we are required to make decisions, such as:

“Should I move in order to take another job; which school should my daughter attend; which benefits package should I select; which
strategy is appropriate for a chess board configuration; how am I going to pay this bill; what’s the best way to get to the interstate during
rush hour; how long should my story be.”

Jonassen, 2000, p. 76

For this reason, becoming mindful about the importance of making informed decisions, analyzing the cost-effectiveness, and predicting
the future impacts of these decisions are important skills for young children to develop.

Finally, troubleshooting requires identifying and fixing an inoperable component of an otherwise working system or a mechanism
(Jonassen, 2000). Similar to system analysis and design, troubleshooting requires an understanding of the system, but in troubleshooting the
focus is on identifying the element(s) that brings a system to a halt. Figuring out why certain software or an electronics device is
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misbehaving, for example, and then taking necessary steps to get it working again is a common troubleshooting scenario people face daily
(National Research Council, 1999). Our daily lives are filled with situations where we are required to troubleshoot a non-working system. For
example, when someone realizes that her car is not working, the process of troubleshooting starts. To identify the source of the problem, the
person takes some steps: check the battery, check the gas level, etc. Each of these sources requires certain tests to be confirmed as the actual
source. For example, realizing the lights of the car are working indicates that the problem might not be due to the battery, and helps the
person rule out an alternative. For success in future careers, being good troubleshooters is important. For instance, a key skill in computer
programming is debugging, or finding the error (also known as “bugs”) in code to get it to function. Without doubt, almost every software
application that people use today goes through extensive stages of debugging. Therefore, for future programmers, understanding the
process of troubleshooting and improving their skills in this area is important.

All of these three problem types are complex in nature, and cover the important problem-solving processes identified within the
problem-solving domain (OECD, 2003). Therefore, providing young students with practices in tackling these problems helps them develop
the ability to solve complex problems. As mentioned before, especially in today’s increasingly technology-filled world, all of these problems
are encountered frequently in our daily lives. Understanding the systems around us, designing new systems, troubleshooting them, and
making informed decisions based on data are important skills to possess for the young children to be successful in their future lives and
careers.
2.4. Research on using computers to teach thinking skills

Starting in the 1970s, researchers in the field of educational technology became interested in how technologies, especially programming
with LOGO, could foster children’s thinking skills. During the 1980s and 1990s, it was a hot debate whether learning programming, mainly
through discovery learning methods, had any effects on students’ general problem-solving skills (Mayer & Wittrock, 1996). Pioneering the
field, Papert (1980) argued that by programming with LOGO (a simplified programming language), children showed improvements in their
thinking skills.

In an early research, Choi and Repman (1993) found that learning to program with Pascal led to improvements in college students’
problem-solving skills. Similarly, comparing a group of high-school students whowere learning to program to a group of students whowere
learning basic computer literacy, Reed and Palumbo (1988) found that the group who participated in a 15-week BASIC instruction (n ¼ 11)
showed a significant increase in their problem-solving ability compared to their peers (n ¼ 11) who received computer literacy instruction
during the same period. Finally, in a recent study by Unuakhalu (2009), 40 undergraduate students were divided into two groups to receive
instruction on programming only, or programming and tasks relating it to everyday problems. At the end of the 8-week treatment, students
who received instruction on programming embedded in everyday tasks performed better on problem-solving posttest, leading authors to
conclude that embedding programming instruction into everyday tasks was an effective method.

Based on the early studies investigating the impacts of programming on thinking skills, recently researchers argued that learning game-
design would lead to similar improvement of thinking skills. Research to support these claims, however, has been lacking, or anecdotal at
best. For example, in their recent research, Richards and Wu (2012) and Wu and Richards (2011) explored whether game-design activities
were effective in teaching computational thinking skills. Although the researchers collected data from several sources (reflective short
answer questionnaires, field notes, student game-design journals, and semi-structured interviews), the results were based on single cases or
anecdotes rather than strong empirical data. Similarly, in another recent study Games and Kane (2011) looked at the relationship between
game-design activities and the students’ thinking skills and STEM knowledge. In this study, as well, the authors fell short in providing
empirical support for their claims.

Recently, researchers (e.g., Baytak & Land, 2010; Denner et al., 2012) investigated the impacts of learning game-design on students’
content knowledge, or programming skills, and provided us with support for the positive impacts of learning game-design on students’
content knowledge (e.g., Baytak & Land, 2010), and programming skills (e.g., Denner et al., 2012). Similarly, other recent research indicated
that through learning game-design students showed improvements in their attitudes toward learning (Hwang et al., 2013) and math (Ke,
2014), while the process was also believed to positively impact students’ computational thinking skills (Denner et al., 2012; Ke, 2014).

Finally, the results of a study conducted previously by Author (2012) showed that following a curriculum that aimed to teach problem-
solving through game-design and programming activities led to improvements in students’ problem-solving skills. In this, the authors found
that the students who attended a 40-h summer game-design program (n ¼ 18) showed significant improvements in their problem-solving
skills. This work, however, had some methodological limitations, such as not having a control group to compare the effects to.

In the current study, we extend the efforts of the previous research, as well as our own, to understand if the process of learning game-
design can also be a good context to teach problem-solving skills. Early work enlightened us as to the positive impacts of learning game-
design on children’s programming, math, or computational thinking skills. Game-design tasks have also received support for their positive
impact on children’s motivation to learn or solve problems (e.g., Hwang et al., 2013). We, however, do not know if students can also find
practice and improve their skills in problem-solving when they are engaged in game-design.
3. The study context: the GDL after-school program

In an effort to bring the benefits and the affordances of game-design and programming to middle school students, we developed an
initiative called The Game-Design and Learning program (or GDL for short). Since its inception, the GDL initiative has engagedmiddle school
students in the process of game-design in a variety of in-school, after-school, and summer camp settings. The goal of the initiative is to
leverage students’ interests in games and design to foster their problem solving and critical reasoning skills.

The after-school format of the GDL programwas developed as a series of 3-h sessions to be offered five times during weekends (for a total
of 15 h). The goals of the GDL program were to: (a) teach students how to design digital games; (b) provide students with a broader un-
derstanding (and skills) in programming; (c) give students practice in becoming producers of digital media rather than consumers; and (d)
teach students problem-solving skills by using game-design as the context for ill-structured problems.



M. Akcaoglu, M.J. Koehler / Computers & Education 75 (2014) 72–81 75
When designing the GDL curriculum, we paid specific attention to incorporating well-known instructional methods for solving prob-
lems, as teaching problem-solving was one of the main goals. In the next section, we summarize the overall structure of the GDL curriculum,
as well as some of the instructional methods used, in order to give the readers a feel of the instructional context of the GDL program. Readers
interested in a broader discussion of the theory behind the design of the curriculum, or a more detailed account of instruction can find such
detailed reports elsewhere (Akcaoglu, 2014).

3.1. Pedagogical principles

Two main pedagogical approaches that guided the design and delivery of the GDL program were constructionism and guided discovery
learning. Constructionism is a derivative of constructivism – the idea that learning is active process of constructing knowledge (Greeno,
Collins, & Resnick, 1996). Replacing “v” with an “n,” Papert (Papert & Harel, 1991) argued that learning is much more meaningful when
the construction process leads to the creation of socially meaningful artifacts (Ackermann, 2001). Built upon the idea of constructionism,
during the GDL program, the students were encouraged to construct their own knowledge of game-design and produce socially meaningful
and engaging artifacts: games (Hwang et al., 2013; Li, 2010).

During the process of construction and design of their games, learners were also encouraged to freely work and discover knowledge
(Mayer, 2004). During the GDL program, guided discovery approach was chosen over pure discovery, and learners were provided with
minimal, but sufficient, guidance and feedback during the game-design process. The reason for this choice was because pure discovery
received criticism (Kirschner, Sweller, & Clark, 2006; Mayer, 2004) for being taxing on learners’ cognition (i.e., learners are expected to
discover the connections between new and existing knowledge on their own). As opposed to pure discovery, in guided discovery, the
learning process is support by minimal guidance from knowledgeable others. This support helps alleviate the cognitive burden on the
learners and benefits the learners more, compared to pure discovery (Kirschner et al., 2006; Mayer, 2004).

3.2. GDL Curriculum and activities

Our curricular goals included teaching students game-design, problem-solving, and programming skills. Although the goals of teaching
game-design and programming were natural outcomes of participating in the GDL program (or any digital game-design program for that
matter), in order to teach students problem-solving, the GDL curriculum and activities were shaped according to the theories of teaching
problem solving. Specifically, the activities were designed to utilize four main methods of teaching problem solving: teach problem-solving
skills directly, teach for understanding, teach by using analogies, and teach (metacognitive) thinking skills (Mayer & Wittrock, 1996, 2006).
Based on these principles and curricular goals, four main types of activities were offered during the GDL program: game-design, problem
solving, troubleshooting, and free-design. As it can be seen in Fig. 1, game-design activities were the through line during GDL program, and
other activities (e.g., problem-solving) were introduced later on as students gained more experience and confidence in game-design and
programming.

Main goal of game-design activities was to teach students the basics of the game-design process. During these activities students also
learned background knowledge and skills in using the game-design software (Microsoft Kodu) and computer programming that are
necessary for designing, programming and creating digital games. This was based on the idea that learning the basic skills (i.e., teaching
basic skills) of game-design and programming would lower the burden on students’ cognition and help them better focus on later activities
that involved solving complex problems.

During game-design activities, the students were guided in creating games (from simple to more complex), through a series of
instructor-led sessions that were followed by free-design sessions where students improved upon their designs and explored concepts in
game-design and programming. Also, during game-design activities, the students got hands-on experiences in (a) system analysis, by seeing
how games are complex systems, made up of many interrelated variables; and (b) game-design, by creating their own games, which are
complex systems. This was especially emphasized when students were given flowcharts of games that they needed to create, and were
asked to create flowcharts for the games that they planned to create.

Problem-solving activities were introduced only after the students were comfortable and competent using Kodu and were familiar with
the game-design process. In other words, by the time the problem-solving activities were introduced, the students had already created at
least three gameswith varying degrees of complexity, become familiar with Kodu, and practiced the basic game-design skills multiple times.
The purpose of these activities was to give students the opportunities to pair the process of problem solving with design. To this end,
problem-solving activities included reading a problem scenario (e.g., a story built on predator-prey relationship), solving the problem by
interpreting the data and the relationship among the variables presented in the scenario, and then creating a replica of the scenario by
creating a simulation of it in Kodu.

During problem-solving activities, instructor guidance was available in the form of directing students through the steps of solving a
problem. The guidance was provided in two specific forms: (a) initial guidance given to the entire class in solving the problem scenario, and
(b) one-on-one guidance to individual students when they struggled with the programming or the design of the simulation. For example, in
the first problem-solving activities, the instructor presented the problem scenario, as well as elicited solutions from the entire class. During
Game-designGame-design
Problem-solvingProblem-solving

Troubleshootingeesshhoooottiingng
Free-design

Fig. 1. Progression of different activities during GDL courses.
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this process, the instructor guided the students in following the steps to solve problems (e.g., understand the problem, and plan a solution).
In fact, through this open guidance, another method of teaching problem solving, teaching (meta-cognitive) skills directly (i.e., identify
elements, plan solution, execute plan, evaluate outcome), was incorporated.

Other effective methods of teaching problem-solving were also used within problem-solving activities. For example, by using analogies,
the students were introduced to problem scenarios built on the same underlying structures but differing on the surface. This way, the
students were given chances toworkwith analogous problems and identify patterns while solving problems. Finally, the idea to use Kodu to
recreate the problem scenarios was based on the idea that students learn better when they create their own personal representations of the
problems, connecting old and new knowledge (i.e., generative methods of teaching problem solving).

In addition to activities purely focusing on game-design and problem solving, during GDL students were also offered activities where the
main task was to fix a broken game: troubleshooting. By analyzing the structure of a given game, during the troubleshooting activities, the
students identified the relationship between its elements, andmade necessary changes tomake the gameworking again. It should be added
that although not explicitly integrated, troubleshooting is a natural part of the game-design process. Therefore, the students found many
opportunities to troubleshoot their games during game-design, problem-solving, or free-design activities.

Finally, during free-design activities the students were asked to create a game of their own choosing. These free-design activities were
purposefully offered toward the end of the GDL program, only after the students gained enough skill and confidence in game-design,
programming, and problem solving, before taking on such an open-ended task like free-design. These activities provided students with
chances to create games that they personally valued. Providing students with free-design activities toward the end was also important
because it both involved elements from previous activities (game-design, problem-solving, troubleshooting) and contextualized these skills
in a meaningful and personal context such as creating their own games.

During free-design activities, as in the other activities, the students also got chances to practice their decision-making skills. It was a
common occurrence for students to decide how to balance the amount of objects in a game based on the capacity of the computers to run
their games. In other words, theywere constantly reminded to bemindful about howmuch processing power their computers had and how
they can make the right decisions where there is minimal compromise. For example, after realizing that his game world was too large for
Kodu to run, one student decided to make all the characters in his game smaller (by changing their size scale), and removed elements that
were not crucial to the gameplay. By this way, he managed to overcome the restriction in Kodu without compromising the integrity of his
game.
4. Purpose

The purpose of this study was to provide empirical support for the positive impacts of learning game-design on students’ problem
solving skills. In other words, we aimed to investigate whether students improved in their problem-solving skills by attending the GDL
program where they got opportunities to practice their problem-solving skills through game-design activities.

In our previous research (Akcaoglu, Boyer, & Kereluik, 2012), we found initial evidence of the connection between learning game-design
and improvement in students’ problem-solving skills. This early researchwas, however, pre-experimental. More specifically, therewas not a
control group to compare the outcomes of the GDL courses. This especially limited interpretation of our results due to possible testing and
maturation effects. In other words, the improvement the students showed from pre to the post test was confounded by the fact that the
students took the same test twice, and we did not have another way to eliminate this rival hypothesis. In our current study, we sought to
overcome this methodological weakness inherent to our previous work by comparing outcomes of the students who attended the GDL
program to a control group. Therefore, our research question was:

� Are there differences between control and GDL students in terms of their gains in problem solving skills?
5. Method

5.1. Participants

A total of 44 students participated in the current study: 20 students in GDL condition and 24 in the control condition. Data for the GDL
group came from two groups of students who attended the GDL programs that were offered during fall of 2012 in Istanbul, Turkey (n ¼ 13)
and Michigan, USA (n ¼ 7). The age average of the students in the GDL group was 11.9, ranging between 11 and 13. Four participants were
female (1 female in the US group and 3 females in the Turkey group), and 16 were male. The students in both Turkey and the US sites came
from upper-middle class families.

As for the demographics of the control group, a total of 24 (12 male and 12 female) students with an age average of 13.4, ranging from 12
to 14, were recruited as the control group. These students were also attending the school where the GDL program was offered in Turkey.
Similar to the experimental groups, students in the control group were also coming from upper-middle class families. In order to minimize
selection biases, the students in the control group were selected from students who could not attend the fall GDL classes due to space
limitations and were interested in a summer offering. With this recruitment strategy we were able to match our students in terms of their
interest in game-design.

Although the activities and scope of the GDL program were kept exactly the same at both sites, since the students were from two
different countries, before merging the data, we tested to see if the students at the two GDL sites were similar in initial levels and showed
similar gains. Our analysis indicated that there were not any significant differences between the experimental groups in terms of their initial
levels of problem solving, (Wilks’s L¼ 0.866), F (3,16)¼ 0.827, p¼ 0.498, h2¼ 0.13; as well as the gains they showed after attending the GDL
program, (Wilks’s L ¼ 0.903), F (3, 16) ¼ 0.571, p ¼ 0.642, h2 ¼ 0.097. The two GDL groups, therefore, were combined and treated as one
group for the further analyses.
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5.2. Instruments

Students’ problem-solving skills were measured by a publicly available and internationally validated assessment, The Program for In-
ternational Student Assessment (PISA), prepared and offered through Organisation for Economic Co-operation and Development (OECD, 2003).
This assessment was designed to measure students’ skill at solving three problem types: system analysis and design, troubleshooting, and
decision-making. The instrument had a total of 19 items, in the form of multiple-choice and open-ended questions. The test can be accessed
through OECD’s website (OECD, 2013).

The PISA test was selected for various reasons. First, the test’s reliability and validity were established through rigorous international
field-testing (OECD, 2003). Second, its scoring is based on item-response theory (IRT) procedures. IRT provides remedies for several
important shortcomings of classical test theory (CTT) (Hambleton, 1990). First, in CTT, item parameters (e.g., item difficulty) are estimated
based on the sample at hand, and are not valid for different samples, whereas in IRT the estimates are not sample-specific and can be applied
to different samples. Second, in CTT, information regarding what an examinee might do when confronted with a specific item is not known,
whereas in IRT students ability estimates can be calculated because “[ability estimates] is obtained by incorporating information about the
items (i.e., their statistics) into the ability estimation process” (Hambleton, 1990, p. 99). Hence, by using IRT, we were able to get individual
proficiency estimates that were calculated based on well-established item difficulty parameters obtained through previous data and
research. Finally, the PISA test was used in this study due to the inclusion of various problem types that are complex in nature and frequently
encountered in real-settings: system analysis and design (8 items), decision-making (7 items), and troubleshooting (5 items).

5.3. Dependent variables

System analysis and design refers to analyzing and creating systems commonly found in real-life settings. Designing or analyzing a system
is a complex task and success is dependent upon understanding the intricate relationship (recognizing patterns) among different variables.
For example, one of the questions in the PISA test required students to understand the logic of a simple programming language that
produced a set of geometrical shapes (i.e., system analysis), which was followed by a question requiring students to write to code to create a
certain shape (i.e., system design). Students’ system analysis and design skill estimates were computed based on their performance average
on eight system analysis and design questions in the test.

Decision-making is a complex problem-solving process, involving selecting the best option frommany available others (Funke & Frensch,
1995; Huber, 1995; Jonassen, 2000). During the PISA test, students’ skill in making decisions was measured by questions that provided them
with constraints and asked them to make the best decision in the given circumstances. For example, in one question students were asked to
find the best movie and day/time to see it by looking at information tables regarding day, time, and rating information for movies at a movie
theater, as well as availability and preference information of a group of 14 year-old students for a week. Based on students’ performance
average in the seven decision-making questions in the PISA tests, a skill estimate for this domain was calculated.

Troubleshooting is perhaps the most common problem solving task people face in their daily lives (Jonassen, 2000). Troubleshooting
requires problem solvers “to comprehend the main features of a system and to diagnose a faulty, or under-performing, feature of the system
or mechanism” (OECD, 2003, p. 168) to bring it back to its original working state. During the PISA test the students were tasked with
identifying elements of systems that malfunction, and suggesting ways to fix them. For example, in one troubleshooting question the
students were asked to propose a method to identify a faulty gate in the gate system of a waterway network around a garden. With this
question students not only had a chance to analyze the relationship among the variables of the given system, but also were asked to
troubleshoot the system to understand which element(s) was causing the problem. The mean of students’ performance in five trouble-
shooting questions was taken as their troubleshooting skill estimate.

The PISA test was designed to measure students’ skills in system analysis and design, troubleshooting, and decision-making in a generic
sense. In other words, the questions were not contextualized within game-design. Therefore, skill at solving these problems was not specific
to game-design and could be generalized to other domains.

5.4. Procedures

In both the US and Turkish versions, the format of the program, as well as the lead instructor were the same. At both sites, the students
attend a 15-h (five 3-h sessions) program. The sequence and content of the instructional activities were also kept exactly the same. The
instructional team at the US site consisted of a lead instructor and two assistant instructors, while at the Turkish site there was only one
assistant instructor. The lead instructor was the creator of the GDL initiative, who designed the curriculum and the activities. In addition, he
had experience teaching game-design, because he had previously run two GDL programs during the summers of 2011 and 2012. The main
role of the assistant instructors was to help with classroom organization and management, and they did not have any instructional roles.

For the GDL group, the testing happened on the first day of the GDL program. The students, first, took the pretest of problem solving. The
test was in paper-pencil format and took around 40 min to complete. Following the test, the students completed a survey of technology
competence and motivation. After completing the testing stage, the students followed the GDL curriculum for five weeks. On the last GDL
session, the students took the same problem-solving assessment and the surveys.

The control group did not attend the GDL program, or any other after-school activities. As mentioned previously, they were chosen
among students who were willing to attend a summer program in the future. The students in the control group took the pretest of problem
solving at the same time as the GDL students (they were taken to a separate classroom). The test was in paper-pencil format and took about
40min. Following the test, the students were taken back to their classrooms. Similar to the pretest, they took the posttest of problem solving
in a separate classroom, at the same time as the GDL group.

The grading of the PISA tests was done by the first author, who was also the lead instructor of the GDL programs in both locations. The
grading was done according to the grading rubric prepared and provided by PISA.

It should be noted here that because the GDL program was offered as a single intervention, identifying how much individual activities
impacted the students’ problem-solving skills was beyond the scope of this research. Instead, we investigated if the GDL intervention
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worked as awhole. Therefore, our results wewill not be able to talk to the specific reasons why the two groups differed, but will speak to the
outcomes of the GDL program as a whole.
6. Results

To calculate each student’s problem-solving competency, IRT analyses were conducted using Xcalibre software (Assessment Systems
Corporation, 2012). The calculations were made based on the difficulty levels for each question as reported by OECD (2003) and stu-
dents’ performances in the PISA assessment. Calculated according to IRT procedures, each student’s problem solving ability was calculated
on a scale ranging from�4 to 4. This scale can roughly be interpreted as a student’s probability of answering all the items at a test correctly.
For example, a student with an ability level of 0 on a specific question is considered to have 50 percent chance (proficiency) of answering the
question correctly.

To answer the research question, the gain difference between control and the GDL group students in three problem-solving skills, a
repeated-measures multivariate analysis of variance (RM-MANOVA), having two levels of time (pre vs. post) as within subjects factors, and
two levels of group (control vs. experimental) as between subjects factor (i.e., mixed-factorial design) was conducted on the dependent
variables. The multivariate omnibus for time was significant (Wilks‘s L ¼ 0.616), F (3, 40) ¼ 8.328, p < 0.001, h2 ¼ 0.384; as well as the
omnibus for group, (Wilks’s L ¼ 0.733), F (3, 40) ¼ 3.0, p ¼ 0.006, h2 ¼ 0.267; and the interaction between time and group, (Wilks’s
L ¼ 0.505), F (3, 40) ¼ 13.063, p < 0.001, h2 ¼ 0.495. As it can be seen in Fig. 2 and Table 1, the results indicate that compared to the control
group, the students in the GDL group showed significantly larger gains in the three problem-solving skills. In fact, the control group did not
improve in any of the problem-solving skills.

In order to further understand the size and nature of the gains the GDL group showed in each of the problem-solving skills, paired-
samples t-tests were run on students’ system analysis design, decision-making, and troubleshooting skills, comparing their pre and the
posttest scores. Running multiple t-tests in such a manner, however, increases Type I error, namely erroneously rejecting the null hy-
pothesis. Therefore, Bonferroni correction was applied (Field, 2009) by dividing the critical alpha level (p ¼ 0.05) by the number of t-tests
conducted (n ¼ 3). This yielded p ¼ 0.017 as the critical alpha p value for the analyses of the three problem-solving skills.

The results of the t-tests indicated that the GDL group demonstrated significant improvements in all three problem-solving skills (system
analysis and design, t(19) ¼ 4.700, p < 0.001; decision-making, t(19) ¼ 4.694, p < 0.001; troubleshooting, t(19) ¼ 3.853, p ¼ 0.001). All the
effect sizes were large according to Cohen’s criteria for effect size interpretation (1988): system analysis and design, d ¼ 1.062; decision-
making, d ¼ 1.05; troubleshooting d ¼ 0.87.
6. Discussion and conclusions

Recently, game-design has received attention from educators and researchers for its potential in teaching computational thinking and
programming skills (Baytak & Land, 2010; Denner et al., 2012). Evidence supporting the connection between these skills and learning game-
design, however, has been slow to emerge. The results of this study showed that, compared to the control group, the students who
participated in the GDL program showed significant increases in their problem-solving skills. Large effect sizes point to sizable amounts of
change in students’ specific problem-solving skills from the pretest to the posttest. More specifically, the GDL group showed large and
significant gains in system analysis and design, decision-making, and troubleshooting skills; which confirmed our hypothesis that learning
game-design at the GDL program leads to an increase in students’ problem-solving skills. This effect was true across different GDL
implementations and sites, pointing to the robustness of the GDL curriculum and activities. In addition, because the PISA assessment was
designed to measure students’ problem-solving skills in a generic sense, it can be argued that the improvement in the students’ skills was
generalizable to other contexts, and not specific to game-design.

Our previous research (Author, 2012) provided us with a preliminary support for the link between teaching students game-design and
changes in their problem solving skills as a result of attending the GDL program. This early work, however, was pre-experimental, and
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Fig. 2. Pre–Post problem-solving skills for control and GDL groups.



Table 1
Pre–Post test descriptive statistics for GDL and control groups in three problem-solving skills for.

Control Experimental

M SD Gain M SD Gain

System Analysis and Design Pre �1.54 1.14 �0.23 �0.91 1.32 0.92
Post �1.77 1.16 0.01 1.11

Decision-making Pre �0.62 0.62 �0.07 �1.08 1.27 1.18
Post �0.69 1.20 0.10 1.14

Troubleshooting Pre �1.35 0.97 �0.05 �1.34 1.11 1.00
Post �1.40 1.08 �0.33 1.09
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findings were limited by the shortcomings of such research designs (i.e., maturation and testing). The current research and its findings were
necessary next steps to further our previous effort by overcoming some of the shortcomings inherent in our early work.

One of the main reasons why the GDL program helped improve students’ problem-solving skills can be the curriculum (and activities)
that highlighted the connection between game-design and problem solving. This being said, however, pointing to specific activities that led
to improvements in students’ skills was not possible to identify with the data at hand. Understanding such specific connections should be
investigated in future studies. It can be argued, however, that the activities and the curriculum structure holistically played a key role in the
success of the GDL program, and the results should be attributed to the program as a whole.

During GDL, students received many hands-on experiences in design tasks. Design problems are complex (i.e., ill-structured) and very
open-ended in nature (Bonnardel, 2000), and design process involves satisfying many interrelated variables. In addition, in design problems
(as was in the case of game-design) the outcome, or the solution to problems is personally meaningful (Bonnardel & Zenasni, 2010). At GDL,
students got first-hand experience in designing, analyzing, and troubleshooting their own games. This can be considered as one of the
reasons that led to improvements in their skills to solve complex (design) problems.

An important step in becoming a successful problem solver is to create effective mental representations of the problem and the solution
(Jonassen, 2004). As a context for creativity and design, during game-design, students get invaluable chances to create and tinker with their
mental representations of problems and solutions in the forms of digital games. According to Bonnardel & Zenasni (2010), creating virtual
representations of design problems is a helpful way of understanding and solving them. To this end, they argue that “[creating mental
representations] allows designers to reach a better understanding of the design problem and to adopt new points of viewabout the object to
be designed” (p. 182). Engaging students in game-design, while also showing them how design tasks are also complex problems, and finally
teaching them skills and metacognitive skills to tackle such complex problems, such as creating visual representations, can be speculated as
one of the main reasons behind the effectiveness of GDL program and curricula.

Through the GDL program, problem-solving skill development in three specific problem types was desired: system analysis and design,
decision-making, and troubleshooting. Skill at solving these problems is very important for success in real-life settings (Jonassen, 2004). For
example, during game-design tasks students were asked to create flowcharts of their games as systems, which can be considered as an
important skill to solve system analysis and design type questions. Similarly, in perhaps all GDL activities, the students faced hard-decisions
tomake. For example, one common decision-making inherent in game-design is deciding how a certain character can be programmed to do
a certain task. Identifying the easiest, the lowest resource-intensive, and the most expandable way to program characters in a game can be
an important reason for students’ development in decision-making skills. Finally, coming across problems is an inherent part of the design
process. For example, during GDL, students constantly found themselves struggling to identify characters or snippets of faulty code that
prevented their games running in the way they desired. All these processes were inherent parts of the very engaging process of game-
design, which eventually resulted in improvements in students’ skills.

Although empirical support has been slow to emerge (Denner et al., 2012), in the most recent years, the number of studies looking at the
potential of game-design activities as contexts to teach young students certain knowledge and skills, as well as improve their attitudes, have
started to increase. The results of this study help to further the field by providing empirical support for the appropriateness of using game-
design as meaningful contexts to teach students important skills, such as problem-solving. More specifically, this study adds to the growing
body of recent research that indicated that, through game-design, students improved in their math knowledge (Li, 2010, 2013), attitudes
toward math (Ke, 2014), programming knowledge (Denner et al., 2012), scientific thinking (Klopfer, Roque, Huang, Wendel, & Scheintaub,
2009), and attitudes toward problem-solving (Hwang et al., 2013). The current work provides support for the connection between learning
game-design and improvement in students’ actual problem-solving skills in system analysis and design, decision-making, and trouble-
shooting domains. In addition, in our workwe highlight the importance of the role of the theories and pedagogies informing our curriculum,
and argue that the careful attention placed on the creation of our curriculum and instructional activities were the main reason for the
improvements that wewere able to capture in our research. Finally, because our instrumentmeasured students’ skills in solving problems in
a generic sense, we believe the skills students learned during the GDL program could be applied to other settings. Looking at the possibility
of transfer of these skills should be investigated in future work.
7. Limitations of study

As for applicability and generalization of the results to other populations, we suggest that educators and researchers should employ
caution when interpreting the results. In this study, we eliminated an important rival hypothesis, the effect of testing and maturation by
including a control condition. There were, however, selection issues that could not be overcome in such quasi-experimental designs, and
therefore, a true experiment might still be needed. For example, the students in the GDL program, and in the control group, were specific
groups of students who showed self-initiated interest in an after-school game-design program. Althoughwe took somemeasures to prevent
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selection issues in this research (e.g., control group included students with similar interest in game-design), the students in this studymight
bear characteristics (cognitive and motivational) that separate them from the rest of the population, and therefore, confound the findings.

In addition, because our control group did not attend an alternative after-school activity, we cannot isolate the effects of merely
participating in after-school activities. Therefore, we do not know how much of the improvement the GDL students showed can be
attributed to the GDL program, and how much is due to pure maturation as a result of participating in an after-school program.

Finally, all of our participants in the control group were from the GDL location in Turkey, although our GDL students and data came
from locations in Turkey as well as the US. Therefore, this limitation should be considered carefully while interpreting the results of this
study.

8. Implications and future study

In addition to leading to significant improvements in students’ problem-solving skills, efforts like GDL are important in identifying
effective ways to integrate technology into educational contexts. We believe GDL program has potential to offer development in domains
other than problem solving, such as important topics from science, technology, education, and math (STEM). For example, through real-life
scenarios in human anatomy (e.g., how diseases spread throughout the body), the students can be asked to identify the elements of the
scenario, and then asked to recreate this in the chosen game-design software. Through such engaging tasks students’ knowledge and skill in
STEM subjects can be improved, as well as their interest in these subjects and future STEM careers.
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